危险!可燃液体和蒸气。吸入有害。吞咽有害或致命。引起呼吸道和眼睛刺激。可能引起过敏性皮肤反应吸入高浓度蒸气可能会影响中枢神经系统。反复接触高浓度蒸气可能会刺激呼吸系统并对大脑和神经系统造成永久性损伤。高浓度蒸气会引起头痛、头晕、嗜睡和恶心,并可能导致昏迷。可进入肺部并造成损害。远离热源和火焰。请勿吸入蒸气或雾气。请勿吞咽。请勿接触皮肤或衣物。避免接触眼睛。在使用前,请将容器紧闭密封。操作后彻底清洗。在使用和干燥期间及之后,提供新鲜空气通风。避免吸入使用此制剂时产生的灰尘、微粒、喷雾或雾气。根据需要使用个人防护设备。危险——如果处理不当,被洪水半透明醇酸树脂/油污浸湿的碎布、钢丝绒或废弃物可能会自燃。每次使用后,立即将碎布、钢丝绒或废弃物放入密封的装满水的金属容器中。急救:如果吞下,用水漱口(仅在患者意识清醒时)。立即就医。除非医务人员指示,否则不要催吐。如果进入眼睛,用水冲洗 15 分钟。检查是否有隐形眼镜并取下。如果接触,立即用大量水冲洗皮肤,同时脱下受污染的衣服和鞋子。如果出现刺激,请就医。如果吸入,请移至新鲜空气处。立即就医。含有异噻唑啉酮。可能引起过敏反应。请存放在儿童接触不到的地方。对于工作场所使用,可从零售商处获取 SDS,或致电 (412) 492-5555。紧急泄漏信息:(412) 434-4515(美国)。
nöthnitzerstr。61,01187德累斯顿,德国2。莱布尼兹 - 固态和材料研究所研究德累斯顿,赫尔姆霍尔茨斯特拉斯20,
以下出版物Jing,X.,Li,H.,Mi,H.-Y.,Feng,P.-Y.,Tao,X.,Liu,Y.,Liu,C。,&Shen,C。(2020)。具有坚硬的界面键合和高能量输出的柔性半透明双电凝胶水凝胶基于底环的纳米生成器[10.1039/c9tc06937b]。材料化学杂志C,8(17),5752-5760可在https://dx.doi.org/10.1039/c9tc06937b上找到。
其高吸收系数使其在半透明太阳能电池应用方面具有吸引力。 [6] 然而,这些材料的高吸收系数使其难以在低带隙钙钛矿(≈带隙<1.7 eV)PSC 中获得高平均可见光透射率 (AVT) 值。虽然降低钙钛矿层厚度是增强任何半透明 PSC (ST-PSC) 中 AVT 的明显解决方案,但是,由于与使用溶液工艺制造亚 100 纳米、均匀、无针孔的钙钛矿薄膜相关的限制,该解决方案尚未可靠地实施。 [7] 因此,限制了 ST-PSC 可实现的最大 AVT。为了解决这个问题,据报道,替代性的钙钛矿层沉积和生长策略可以在不需要显著减少膜厚度的情况下提高钙钛矿层的透射率。[7] 例如,最初引入了脱湿和网格辅助沉积技术,使钙钛矿薄膜部分覆盖在基底上。脱湿技术导致随机生长的钙钛矿岛的形成,[8,9] 而网格辅助沉积导致钙钛矿在受控的网格结构中生长。[10,11] 虽然这两种方法显著提高了钙钛矿层的透射率,但由于在无钙钛矿区域空穴传输层和电子传输层直接接触导致分流通路的存在,相应的器件表现出有限的 PCE。[12] 需要在没有钙钛矿的区域额外选择性沉积绝缘分子,以减少上述泄漏损失。 [12,13] 随后,引入支架层和材料以生长有序的大孔 [14] 微结构 [15,16] 和纳米结构 [17] 钙钛矿层。虽然这些钙钛矿结构表现出增强的透射率和减少的分流通路,从而提高了 ST-PSC 的 AVT 和 PCE,但它们的制造相对复杂和繁琐得多,即与厚的不透明钙钛矿薄膜的溶液处理相比,它们需要额外的材料和合成工艺。此外,在大多数情况下,上述 ST-PSC 的开路电压 (V oc) 和填充因子 (FF) 分别低于 ≈ 1000 mV 和 ≈ 70%,这表明与不透明的对应物相比,这些器件中存在残余复合损失。因此,需要一种简单的替代方法来生长足够透明和致密的钙钛矿层
1. Aziz A、El-Mowafy O、Paredes S。使用 CAD/CAM 技术制作的锂二硅酸盐玻璃陶瓷冠的临床结果:系统评价。Dent Med Probl。2020;57(2):197-206。2. Marchesi G、Camurri Piloni A、Nicolin V、Turco G、di Lenarda R。椅旁 CAD/CAM 材料:临床应用的当前趋势。生物学。2021;10(11):1170。3. Stawarczyk B、Özcan M、Trottmann A、Schmutz F、Roos M、Hämmerle C。CAD/CAM 树脂块及其牙釉质拮抗剂的双体磨损率。J Prosthet Dent。2013;109(5):325-332。 4. Arif R、Yilmaz B、Johnston WM。用于层压贴面和全冠的 CAD-CAM 修复材料的体外颜色染色性和相对半透明度。J Prosthet Dent。2019;122(2):160-166。5. Corado HPR、da Silveira P、Ortega VL 等人。用于 CAD/CAM 的基于锂二硅酸盐和氧化锆增强锂硅酸盐的玻璃陶瓷的抗弯强度。Int J Biomater。2022;2022:1-9。6. Chen Y、Yeung AWK、Pow EHN、Tsoi JKH。锂二硅酸盐在牙科中的现状和研究趋势:文献计量分析。J Prosthet Dent。2021;126(4):512-522。 7. Abad-Coronel C、Ordoñez Balladares A、Fajardo JI、Martín Biedma BJ。使用 CAD/CAM 系统制造并使用不同热单元和程序结晶的锂二硅酸盐长石修复体的抗断裂性。材料。2021;14(12):3215。8. Lubauer J、Belli R、Peterlik H、Hurle K、Lohbauer U。把握锂的炒作:洞察现代牙科锂硅酸盐玻璃陶瓷。Dent Mater。2021;38:318-332。9. Gürdal I、Atay A、Eichberger M、Cal E、Üsümez A、Stawarczyk B。热循环后 CAD-CAM 材料和复合树脂水泥的颜色变化。J Prosthet Dent。 2018;120(4):546-552。10. Phark JH、Duarte S Jr。新型锂二硅酸盐玻璃陶瓷的微观结构考虑因素:综述。牙科美学修复杂志。2022;34(1):92-103。11. Stawarczyk B、Mandl A、Liebermann A。现代 CAD/CAM 硅酸盐陶瓷及其半透明度以及水热老化对半透明度、马氏硬度、双轴抗弯强度和可靠性的影响。机械行为生物医学材料杂志。2021;118:104-456。12. Gunal B、Ulusoy MM。不同厚度的当代单片 CAD-CAM 修复材料的光学特性。牙科美学修复杂志。2018;30(5):434-441。 13. Sen N、Us YO。整体式 CAD-CAM 修复材料的机械和光学性能。J Prosthet Dent。2018;119(4):593-599。14. Kurt M、Banko glu Güngör M、Karakoca Nemli S、Turhan BB。上釉方法对硅酸盐陶瓷光学和表面性能的影响。J Prosthodont Res。2020;64(2):202-209。15. Donmez MB、Olcay EO、Demirel M。纳米锂二硅酸盐陶瓷在不同老化过程后的抗负载失效性能和光学特性。材料。2022;15(11):4011。 16. Subas¸ ı MG、Alp G、Johnston WM、Yilmaz B. 厚度对单片 CAD-CAM 陶瓷光学特性的影响。J Dent。2018;71:38-42。17. Çakmak G、Donmez MB、Kashkari A、Johnston WM、Yilmaz B。厚度、水泥色度和咖啡热循环对氧化锆增强锂硅酸盐陶瓷光学性能的影响。J Esthet Restor Dent。2021;33(8):1132-1138。18. Zarone F、Ruggiero G、Leone R、Breschi L、Leuci S、Sorrentino R。氧化锆增强锂硅酸盐 (ZLS) 的机械和生物学性能:文献综述。J Dent。2021;109:103661。
1........................................ ...... ……………………………… ……………………………… ...................................... 72
最近,人们尝试将能量收集和存储结合起来,制成用于自供电系统的光伏储能模块 (PESM)。13-15然而,外部电路通常用作集成器件中 PV 和电荷存储部分之间的互连,这会导致平面互连导致表面积利用率低,并且与柔性基板上的卷对卷印刷不兼容。探索具有高机械灵活性和光学透明度的设备以满足未来无处不在的电子产品(包括可穿戴设备和交互系统)的需求是一项挑战。16,17该领域的最终目标是通过印刷或卷对卷制造在垂直方向上开发高效、灵活、透明且低成本的 PESM。 18,19 因此,低温下实现的全溶液处理柔性 PESM 非常适合实现升级,并且具有成本效益。光伏设备中常用的透明电极是氧化铟锡 (ITO),它可以提供高透射率和低薄层电阻。然而,ITO 机械脆性大,