这意味着载流子在费米能级上完全 (100%) 自旋极化,使磁性 HM 在先进自旋电子器件中具有极好的实际应用前景。[1–6] 然而,开发适用于接近室温 (RT) 温度的实用自旋电子器件需要同时考虑 HM 材料的某些合成性能。首先,FM 或 FiM 居里温度 ( TC ) 应明显高于 RT。其次,绝缘自旋通道的能隙 ( E g ) 应足够宽以抑制由载流子热激发引起的自旋翻转转变,确保在工作温度区域内 100% 自旋极化。[7,8] 此外,与磁矩成正比的电子自旋极化必须足够高才能有效地注入极化自旋。[4,9–12] 钙钛矿氧化物是半金属研究的最重要系统之一。迄今为止,钙钛矿中实验实现的最高 TC 约为 635 K。[13] 尽管实验中已经报道了各种各样的磁性 HM,但开发同时满足上述三个要求的单相材料仍然是一个关键挑战。例如,尽管在 NiMnSb、[3] Co 2 FeSi、[14] 中观察到较高的居里温度
外尔半金属 MoTe 2 为研究外尔物理与超导之间的相互作用提供了难得的机会。最近的研究发现,Se 取代可以将超导性提高到 1.5 K,但会抑制对于外尔态的出现至关重要的 T d 结构相。迄今为止,尚未建立对增强超导和 T d 相可能共存的微观理解。在这里,我们使用扫描隧道显微镜研究了最佳掺杂的超导体 MoTe 1.85 Se 0.15,其体相 T c ∼ 1.5 K。通过准粒子干涉成像,我们发现了具有破缺反演对称性的低温 T d 相的存在,其中超导性全局共存。此外,我们发现从上临界场和涡旋附近的态密度衰减中提取的超导相干长度远大于现有化学无序的特征长度尺度。我们发现 MoTe 1.85 Se 0.15 中的 Weyl 半金属正常相具有稳健的超导性,这使它成为实现拓扑超导的有希望的候选材料。
摘要:本研究报告了空间群为I 4 1 md 的磁性外尔半金属候选材料NdAlGe单晶的成功生长。该晶体采用浮区技术生长,该技术使用五个激光二极管(总功率为2 kW)作为热源。为了确保在生长过程中稳定形成熔融区,我们采用了钟形分布的垂直辐射强度曲线。将电弧熔炼锭粉碎后的标称粉末在静水压力下成型,然后在由氧化钇稳定的氧化锆制成的氧气泵产生的超低氧分压(<10 − 26 atm)的氩气气氛中烧结进料棒和种子棒,加热至873 K。成功生长出长度为50 mm 的NdAlGe单晶。生长的晶体在 13.5 K 时表现出块状磁序。基本物理特性通过磁化率、磁化强度、比热、热膨胀和电阻率测量来表征。这项研究表明,磁序在 NdAlGe 中诱导各向异性磁弹性、磁熵和电荷传输。
KG Suresh 研究领域:磁学和自旋电子学、拓扑物质、磁性 Skyrmions 过去几年,我的主要研究工作是识别用于包括自旋电子学在内的多功能应用的新型和潜在材料。为此,我们主要关注 Heusler 合金系列。这项工作涉及各种常规表征技术,以及一些先进和复杂的设施,例如同步辐射。我们已成功识别出一些用于半金属铁磁体、自旋无间隙半导体、双极磁性半导体和自旋半金属的潜在材料。这是通过将实验结果与理论研究相结合而实现的。从这个角度来看,还有更多的系统需要探索。最近,我们还开始关注拓扑半金属,也称为新型量子材料,其特征是块体和表面的性质不同。它们具有由块体能带结构的拓扑引起的不同表面状态。拓扑狄拉克或韦尔半金属在称为狄拉克点或韦尔点的点周围表现出线性色散。其中一个可以寻找此类材料的家族是 Heusler 合金。拟议的工作主题
锂离子电池(LIB)具有循环寿命长、能量密度高、稳定性好等优点,被广泛应用于便携式设备和电动汽车。[1] 然而,全球锂供应有限、成本和安全问题以及对其环境影响的担忧严重阻碍了 LIB 的大规模应用。[2] 因此,后锂离子电池如钠离子(Na + -ion)、钾离子(K + -ion)、钙离子(Ca + 2 -ion)和镁离子(Mg + 2 -ion)电池因其能量密度提高、成本降低、安全性增强、储量丰富以及对环境更加友好而备受关注。[3] 在这种情况下,Mg + 2 和 Ca + 2 等多价离子会经历单电子以上的氧化还原反应,与相应的单价电池相比,其体积能量密度更高。此外-
受最近成功合成双 M 碳化物的启发,我们利用密度泛函理论研究了 WCrC 和 WCrCO 2 单层的结构和电子特性以及双轴和非平面应变和电场的影响。发现 WCrC 和 WCrCO 2 单层是动态稳定的。WCrC 是金属,而 WCrCO 2 表现出具有窄带隙的半金属特性,可以通过应变工程和电场来控制。WCrCO 2 单层表现出双带隙,在电场存在下得以保留。WCrCO 2 单层的带隙在单轴应变下增加,而在拉伸应变下变为金属,从而产生奇异的二维双半金属行为。我们的结果表明,WCrCO 2 是研究二维狄拉克材料新物理特性的新平台,可能为实现高速低功耗设备提供新的机会。
近年来,外尔半金属(WSM)在固态研究中引起了广泛关注。它们的独特性质是由电子能带结构中导带和价带的单个接触点决定的,该结构具有线性电子色散。[1,2] 在这种所谓的外尔锥中,电子表现为无质量的准相对论费米子,并由狄拉克方程的相应解外尔方程描述。[3] 这些外尔节点总是以相反手性的成对出现,在动量空间中分开并由拓扑保护的表面态(费米弧)连接。 [4,5] 这种特殊的电子结构产生了许多材料特性,例如高电子迁移率、[6,7] 低温超导性、[8–10] 巨大的磁阻、[11,12] 强烈的异常霍尔效应、[7,11,13] 以及 Adler–Bell–Jackiw 异常。[14–17]
尽管边缘态是拓扑物理学的基本性质,但直接测量拓扑半金属费米弧的电子和光学特性一直是实验上的重大挑战,因为它们的响应常常被金属块体所淹没。然而,表面态和块体态携带的激光驱动电流可以在非对称晶体中以不同的方向传播,这使得这两个成分很容易分离。受最近理论预测 [1] 的启发,我们测量了在 0.45−1.1eV 入射光子能量范围内源自非对称手性韦尔半金属 RhSi 费米弧的线性和圆形光电效应电流。虽然在研究的能量范围内表面光电流的方向偏离了理论预期,但我们的数据与预测的圆形光电效应光谱形状与光子能量的关系非常吻合。还观察到了由线性光电效应引起的表面电流,出乎意料的结果是只需要六个允许的张量元素中的两个来描述测量值,这表明出现了与晶体空间群不一致的近似镜像对称性。
具有 Kagome 晶格的量子材料中独特的电子行为 [5] 和磁性行为 [6,7] 使得 Kagome 材料成为一个极其有趣的平台。这些有趣的量子态是由于电子能带结构和磁序的非平凡拓扑、强电子关联和受挫而出现的。探索这些材料中电子能带结构和相应磁性之间的相互作用,发现了大块狄拉克半金属 Fe 3 Sn 2 、[5] 外尔半金属 Mn 3 X(X = Sn,Ge)[8] 和 Co 3 Sn 2 S 2 、[9],它们表现出本征陈量子相、较大的异常霍尔效应和手性异常。[5,10,11] 一个特别有趣的例子是磁体 RMn 6 Sn 6(R = 稀土元素),它根据特定 R 元素和受挫 Mn Kagome 晶格之间的相互作用而具有几种磁序。 [12–14] 在室温下,Tb 和 Mn 磁矩位于不同的 Kagome 子晶格上,且呈非平面反平行排列的亚铁磁结构已被证明能有效实现具有拓扑