遗传性周围神经病 (IPN) 是一组与各种基因突变有关的疾病,这些基因在周围神经的发育和功能中起着重要作用。在过去的 10 年里,通过细胞生物学研究和转基因苍蝇和啮齿动物模型,在识别轴突和髓鞘变性背后的分子疾病机制方面取得了重大进展,促进了有希望的治疗策略的发展。然而,迄今为止尚未出现临床治疗方法。缺乏治疗方法凸显了对更多生物学和临床相关模型的迫切需求,这些模型可以重现 IPN。对于神经发育和神经退行性疾病,患者特异性诱导多能干细胞 (iPSC) 是疾病建模和临床前研究的一个特别强大的平台。在这篇评论中,我们提供了不同体外人类细胞 IPN 模型的最新信息,包括传统的二维单一培养 iPSC 衍生物,以及使用微流体芯片、类器官和组装体的更复杂的人类 iPSC 系统的最新进展。
抽象风疹病毒是一种重要的人类病原体,在怀孕期间收缩时会导致发育中的胎儿神经缺陷。尽管在美洲和许多发达国家进行了成功的疫苗接种计划,但在全球许多地区,风疹仍然存在,并且在人口免疫不足的情况下发生。强烈的兴趣以来,自1962年首次分离风疹病毒以来,感染后,我们对临床结果的理解却破坏了胎儿神经发育的关键过程。然而,仍然未知脑中的哪些细胞类型是针对的。我们表明,在人脑切片中,风疹病毒主要感染小胶质细胞。这种感染发生在异质种群中,但在没有其他细胞类型的情况下不存在于高度胶质细胞的单一培养物中。通过使用类器官 - 微神经模型,我们进一步证明了风疹病毒感染会导致非微神经细胞(包括神经元和神经祖细胞)的干扰素反应深刻,并且这种反应因小胶质细胞的存在而减弱。
环境监测 (EM) 计划是制药生产中一项重要的 GMP 控制。它必须快速检测出偏离既定警报/行动限度的情况,这些情况可能会损害设施的控制状态。从环境压力中恢复的能力取决于两个主要因素:培养基的类型和质量以及培养温度(主要是两个连续的温度)的适宜性。在日常环境监测中实施单一培养温度是一项具有挑战性的任务,业内仍在讨论这一问题。最近的举措,如 PDA“一种培养基,一种温度”,提出了一种简化培养方案的方法,即使用在 25-30°C 范围内的单一温度下培养的 TSA。在 bioMérieux“体外研究”1 中,该研究检查了不同温度下各种微生物的生长情况,可以检测到所有细菌的通用温度为 25°C。bioMérieux 使用真实的 EM 样本进行了一项新研究,以比较单温培养和双温培养的性能。海报展示了所获得的结果并强调了单一温度孵化对于常规使用的适用性,同时也表明独特温度的选择可以加快检测时间并改善 EM 测试的结果时间。
关于根特征的最新研究表明,有两个轴解释了地下的特征变化:与菌根合作伙伴的协作轴和保护和保护(“快速 - 慢”)轴。然而,这些特征轴是否影响土壤传播真菌的组装尚不清楚。我们期望腐生性真菌与根特征的保护轴相连,而致病性和羊膜菌根真菌真菌与协作轴的链接相反,但在相反的方向上,如弧形菌根菌根真菌可能提供致病原的保护。为了检验这些假设,我们测序了根际真菌群落和25种草地植物物种的单一培养物中的根特征,年龄不同。在真菌公会中,我们评估了真菌物种的丰富度,相对丰度和社区组成。与我们的假设相反,真菌多样性和相对丰度与根特征轴没有密切相关。然而,腐生真菌群落组成受到菌群梯度的保护梯度和致病群落组成的影响。根际AMF社区组成并未沿协作梯度发生变化,即使根性状轴与根菌根菌落定殖速率一致。总体而言,我们的结果表明,从长远来看,根特性轴与真菌群落组成有关。
Ribatejo地区霍尔托工业作物的生产基于具有高技术干预的单一培养系统,这导致土壤生物多样性失衡,生育能力丧失和进行性降解。在这些系统中,在农业年主要农作物之前引入覆盖作物可以有助于改善生产系统的土壤状况和可持续性。目前的工作描述了在Ribatejo的两个现场试验中对土壤微生物指标的评估,其中安装了不同的覆盖作物:豆类和草的生物多样性混合物,包括接种根茎的三叶草;年度黑麦草(Lolium Multiflorum);和觅食萝卜(raphanus sativus)进行生物耗尽。在两个领域都保持了无覆盖作物的控制地块。评估集中于土壤酶活性(脱氢酶,碱性磷酸酶和β-葡萄糖苷酶)和几组微生物,包括总细菌,共生氮固定细菌(Rhizobia),散生氮的氮,磷酸细菌,磷酸化细菌 - 磷酸细菌 - 磷酸化磷酸化 - 磷酸化 - 磷酸化 - 磷酸化细菌溶质溶质 - 磷酸化盐溶质溶质溶剂溶质溶质溶剂溶质溶质溶质溶剂化磷酸化磷酸化细菌和磷酸化磷酸化磷酸化细菌和磷酸化磷酸化细菌。微生物。结果表明,土壤微生物活性增加和有益的微生物具有覆盖作物的趋势,尤其是豆类和草的生物多样性混合物以及每年的黑麦草。
气候变化和生物多样性损失是需要集成解决方案的相互联系的危机。虽然诸如造林和造林,可再生能源开发以及具有碳捕获和储存的生物能源(BECC)等缓解策略对于减少温室气体排放至关重要,但它们也对生态系统(特别是生物脱位)构成风险。本综述研究了这些关键缓解策略的生物多样性影响,从而确定了潜在的权衡和协同作用。大规模的森林人工林可以隔离碳,但在单一培养物中实施时通常会降低生物多样性。可再生能源扩张,尤其是风和太阳能农场,会导致脱碳,但会破坏栖息地和野生动植物的迁移。Beccs虽然促进了负排放,但需要广泛的土地转换,威胁生物多样性和粮食安全。为了平衡气候行动与生态完整性,本研究主张生态盈余文化,缓解策略不仅可以最大程度地减少伤害,而且可以积极增强生物多样性。基于自然的解决方案,例如恢复本地森林和整合具有生物多样性的可再生能源计划,可提供最大化共同利益的途径。政策框架必须优先考虑生物多样性保障措施,促进可持续的土地利用并确保社区参与。通过整体,长期计划共同解决气候和生物多样性目标,对于促进环境弹性和实现真正可持续的气候解决方案至关重要。
摘要:合成微生物群落在生物技术中的价值因其承担比单一培养更复杂的代谢任务的能力而受到关注。但是,通常需要对应变相互作用,生产率和稳定性进行彻底的了解,以优化生长并扩大培养。定量蛋白质组学可以为微生物菌株如何适应生物制造的变化条件提供宝贵的见解。但是,当前的工作流和方法不适用于应变比是动态的简单人工共培养系统。在这里,我们使用包含两个成员Azotobacter Vinelandii和Synechococcus Elongatus的示例系统建立了共培养蛋白质组学的工作流程。研究了影响共培养蛋白质组学定量准确性的因素,包括肽物理化学特征,例如分子量,等电点,疏水性和动态范围,以及与蛋白质鉴定有关的因素,例如蛋白质体大小和种群之间的共享肽。在蛋白质和细胞水平上评估了基于光谱计数和强度的不同定量方法。我们提出了一种名为“ LFQRATIO”的新归一化方法,以反映两种不同细胞类型的相对贡献,这些细胞类型从共培养过程中出现的细胞比率变化出现。lfqratio可以应用于实际共培养蛋白质组学实验,从而为每个菌株中定量蛋白质组变化提供准确的见解。关键字:微生物共培养,定量蛋白质组学,无标签定量,synechococcus,Azotobacter■简介
摘要:微藻具有广泛的代谢多样性、快速的生长速度和低成本的生产,使其成为各种生物技术应用的极具前景的资源,可满足工业、农业和医学领域的关键需求。微藻与细菌联合使用已被证明在生物技术的多个领域很有价值,包括处理各种类型的废水、生产生物肥料以及从其生物质中提取各种产品。微藻衣藻的单一培养多年来一直是一种重要的研究模型,并已广泛应用于光合作用、硫和磷代谢、氮代谢、呼吸和鞭毛合成等研究。最近的研究越来越多地认识到衣藻-细菌联合体作为各种应用的生物技术工具的潜力。使用衣藻及其细菌群落对废水进行解毒,为可持续减少污染物提供了巨大的潜力,同时促进了资源回收和微藻生物质的价值化。使用衣藻及其细菌群落作为生物肥料可以带来多种好处,例如增加作物产量、保护作物、保持土壤肥力和稳定性、有助于减缓二氧化碳排放以及有助于可持续农业实践。衣藻 - 细菌群落对高价值产品的生产起着重要作用,特别是在生物燃料的生产和氢气生产的增强方面。本综述旨在全面了解衣藻单一栽培及其细菌群落的潜力,以确定当前的应用并提出新的研发方向以最大限度地发挥其潜力。
摘要:多年来,有证据表明胞质喹酮还原酶NQO2在帕金森氏症诱导的多巴胺神经元变性模型中可能的贡献作用,但大多数数据已在体外获得。因此,我们问了一个问题,NQO2是否参与MPTP的体内毒性,MPTP是一种经典用于帕金森氏病诱导神经变性的神经毒素。首先,我们表明NQO2在小鼠黑质中表达,nigra多巴胺能细胞体和人多巴胺能SH-SY5Y细胞也表达。一种高度特异性的NQO2抑制剂S29434能够减少具有星形胶质细胞U373细胞的SH-SY5Y细胞的共培养系统中MPTP诱导的细胞死亡,但在SHSY5Y单一培养物中无活性。我们发现S29434仅略微防止MPTP中毒在体内中的MPTP中的黑质酪氨酸羟化酶 +细胞损失。该化合物在第7天产生了多巴胺能细胞存活的略有增加,MPTP治疗后21个,尤其是1.5 mg和3 mg/kg剂量方案。未达到统计显着性的救援效应(除了在第7天进行了一个实验),并且在最新时间点随着4.5 mg/kg剂量的降低。尽管在小鼠MPTP模型中缺乏NQO2抑制剂的强大保护活性,但我们不能排除酶在帕金森氏变性中的可能作用,尤其是因为它在多巴胺能神经元中基本上表达。
废水处理的基本目标是双重的:(1)将有机废物降低到在接收水时不会产生显着的,溶解的氧气需求的水平,并且(2)将营养(氮和磷)清除到在接受水域生长限制的光合生物体的水平上。为了实现这些目标,植物运营商必须了解与废水处理相关的生物过程和生物,以确保在每个过程中都存在适当,活跃和适当的细菌种群。细菌是所有生物过程中主要关注的生物。但是,废水中的细菌不是单一培养物,而是各种各样的生物体,这些生物具有不同的作用,并且具有不同的操作条件,最适合其最佳活性和生长(即废水处理)。细菌的巨大多样性及其在废水处理中的作用在两个生物治疗单元中最好,即作用的污泥工艺和厌氧消化酯。在本书中审查了细菌和这两个生物逻辑治疗单元。活性污泥过程是市政废水处理厂中最常用的有氧生物治疗单元。这里的生物由丙酸酯(细菌)和欧洲蛋白酶(原生动物和后生动物)组成。生物过程发生在有氧和缺氧环境中,并基于呼吸。厌氧消化酯是市政废水处理厂最常用的厌氧生物治疗单元。这些生物仅由procaryotes组成。生物学过程发生在厌氧环境中,并基于发酵。在活性污泥过程和厌氧消化池之间,微生物群落存在显着差异。本书回顾了细菌群,它们在废水处理中的作用以及影响其活动的操作条件。每个细菌群的作用可能是有益的或有害的