近年来,可持续能源系统的转变见证了无碳和碳高效发电在电网中的快速部署。然而,碳减排的好处并非在整个电网中均匀体现。每个发电机可以有不同的碳排放率。由于物理功率流的存在,节点功耗由一组发电机的组合来满足,而这种组合由网络拓扑、发电机的特性和电力需求决定。本文介绍了一种基于物理功率流模型的技术,该技术可以根据发电和功率流信息有效地计算每个单个发电机贡献的节点碳排放量。我们还扩展了该技术以计算节点平均碳排放量和边际碳排放率。模拟结果验证了计算的有效性,同时我们的技术为碳审计、碳导向需求管理和未来碳导向产能扩张等应用提供了基本工具。
脑机接口使神经科学家能够将特定的神经活动模式与特定的行为联系起来。因此,除了目前的临床应用外,脑机接口还可用作研究大脑学习和可塑性的神经机制的工具。数十年来使用此类脑机接口的研究表明,动物(非人类灵长类动物和啮齿动物)可以通过操作条件反射自我调节大脑各种运动相关结构的神经活动。在这里,我们要问的是,人类大脑是一个由超过 800 亿个神经元组成的复杂互连结构,它能否学会在最基本的层面——单个神经元——上自我控制。我们利用这个独特的机会记录了 11 名癫痫患者的单个单元,以探索边缘系统和其他与记忆相关的大脑结构中单个(直接)神经元的发放率是否可以受到意志控制。为此,我们开发了一个视觉神经反馈任务,训练参与者通过调节他们大脑中任意选择的神经元的活动来移动屏幕上的方块。值得注意的是,参与者能够有意识地调节这些以前未经研究的结构中的直接神经元的发放率。我们发现一部分参与者(学习者)能够在一次训练课程中提高他们的表现。成功的学习的特点是:(i)直接神经元的高度特异性调节(表现为发放率和爆发频率显著增加);(ii)直接神经元的活动与邻近神经元的活动同时去关联;(iii)直接神经元与局部 alpha/beta 频率振荡的稳健锁相,这可能为促进这种学习的潜在神经机制提供一些见解。记忆结构中神经元活动的意志控制可能为探索人类记忆的功能和可塑性提供新方法,而无需外部刺激。此外,这些大脑区域神经活动的自我调节可能为开发新型神经假体提供途径,用于治疗通常与这些大脑结构中的病理活动相关的神经系统疾病,例如药物难治性癫痫。
摘要。我们踏上了古老的任务:从仅瞥见其可见部分的物体中揭示了隐藏的物体。为了解决这个问题,我们提出了Vista3d,这是一个在仅5分钟内实现迅速而有能力的3D代表的框架。Vista3d的核心是一种两相的方法:粗相和细相。在粗相中,我们从单个图像中迅速生成初始几何形状。在细阶段,我们直接从学到的高斯脱落中提取一个签名的差异函数(SDF),并通过可区分的等音表面表示对其进行选择。此外,它通过使用带有两个独立隐式函数的分离代表来捕获对象的可见和模糊方面,从而提高了发电质量。此外,它通过角扩散先验的梯度与3D感知扩散先验的梯度通过角度扩散先验组成。通过广泛的评估,我们证明Vista3d有效地维持了生成的3D对象的一致性和二元性之间的平衡。演示和代码将在https://github.com/florinshen/vista3d上找到。
随着移动设备成为人类存在和活动的代理,移动运营商收集的数据集(即呼叫详细记录(CDRS))被公认为是研究人类行为的常见工具,在多种研究中和行业中,社会学[1],例如,流行病学[2],运输[3],交通[3],[4](CF>)图1a)。CDR描述了与操作员网络交互的每个移动设备生成的时期和地理参考事件类型(例如,呼叫,SMS,数据)(参见表I)。 它们包括城市,地区或乡村地区,通常涵盖长期(月或数年);当今,没有其他技术提供同等的人均精确范围。 然而,现实世界中CDR对研究的剥削面临许多局限性(参见 §ii)。 首先,可访问性:CDRS数据集未公开可用,施加了严格的移动运营商协议。 第二,可用性:CDR通常以汇总形式(即分组的迁移率流和粗时空信息)提供,限制了相关分析的精确性。 第三,隐私:即使是匿名化的CDR,CDRS描述了用户习惯的敏感信息,这使他们的共享性硬化[5]。 第四,灵活性:限制访问CDRS的限制了高级研究,需要在人口规模,持续时间或地理覆盖范围内进行数据丰富。 本文介绍了实施CDR的自动生成,以解决上述挑战。表I)。它们包括城市,地区或乡村地区,通常涵盖长期(月或数年);当今,没有其他技术提供同等的人均精确范围。然而,现实世界中CDR对研究的剥削面临许多局限性(参见§ii)。首先,可访问性:CDRS数据集未公开可用,施加了严格的移动运营商协议。第二,可用性:CDR通常以汇总形式(即分组的迁移率流和粗时空信息)提供,限制了相关分析的精确性。第三,隐私:即使是匿名化的CDR,CDRS描述了用户习惯的敏感信息,这使他们的共享性硬化[5]。第四,灵活性:限制访问CDRS的限制了高级研究,需要在人口规模,持续时间或地理覆盖范围内进行数据丰富。本文介绍了实施CDR的自动生成,以解决上述挑战。尤其是(1)我们通过建立这种生成的痕迹的范围并描述它如何为研究进展提供新的途径,详细介绍了这种解决方案的动机,(2)我们通过提出相关要求和挑战来分享对现实CDR生成的可行性研究。
本出版物介绍了欧盟网络安全局(ENISA)单一节目文件2025-2027,并由管理委员会在决策号MB/2024/16中批准。管理委员会可以随时修改2022-2024的工作计划。enisa有权更改,更新或删除出版物或其任何内容。它仅用于信息目的,必须免费访问。所有对其的引用或全部或部分用途都必须包含ENISA作为其来源。第三方来源被适当地引用。Enisa对外部资源的内容不承担任何责任或负责,包括本出版物中引用的外部网站。Enisa和任何代表其行动的人都不是对本出版物中包含的信息所构成的使用。ENISA保持其与本出版物有关的知识产权。
仅用于研究使用。不适用于诊断程序。本出版物可能包含对您所在国家不可用的产品的引用。请与我们联系以检查您所在国家的这些产品的可用性。未经Shimadzu的书面批准,本出版物的内容不得出于任何商业目的而复制,更改或出售。有关详细信息,请参见http://www.shimadzu.com/about/trademarks/index.html。本出版物中可以使用第三方商标和商标名称来指代实体或其产品/服务,无论它们是否与商标符号“ TM”或“ tm”或“”一起使用。Shimadzu拒绝了以外的商标和商品名称的任何专有权益。本文中包含的信息是“原样”提供给您的,没有任何形式的保证,包括无限制保证其准确性或完整性。Shimadzu对与本出版物的使用有关的任何损害(无论是直接或间接的)都不承担任何责任。本出版物基于出版日期或之前的Shimadzu的信息,并在不通知的情况下进行更改。
摘要在这项工作中,我们研究了一种场景,其中多个身体相互作用系统中的统一量子动力学仅限于单个激发子空间。我们询问在这样的子空间内部的动力学通常与征征热假说(ETH)的预测有何不同。我们表明,对于某些初始状态和可观察结果,如果发生热化,它将无法实现对ETH的其他关键预测。而是遵循不同的通用行为。我们通过分析长期波动,两点相关函数和超时订购的相关器来显示这一点;分析详细介绍与ETH预测的偏差。我们取而代之的是一种类似伦理的关系,可观察到的矩阵元素,具有非随机偏外的关系,其相关性会改变长期行为并约束动力学。此外,我们通过分析计算衰减至平衡的时间依赖性,表明它与初始状态的生存概率成正比。我们最终注意到,在许多物理场景中,堆积的条件很常见,例如旋转波
-CRR III /CRD VI银行包在欧盟实施巴塞尔III。在2023年底的第六款资本要求指令(CRD VI)和第三资本要求法规(CRR III)的谈判结束后,EBA已开始处理许多授权。最终,包装打算增强银行对冲击的韧性(实施2017年12月巴塞尔三世协定的最终要素,以促进绿色过渡并为主管提供更强大的执法工具。将要求EBA在采用后12到18个月内实施大约140项技术标准和准则。授权的数量显着高于最初的立法提案草案(约40%),并且没有在这种特定情况下分配任何其他资源,EBA面临着巨大的挑战,即预期的一切的全面和及时交付。
Rana Alhalabi 1、Etienne Nowak 1、Ioan-lucian Prejbeanu 2 和 Gregory Di Pendina 2 1 CEA LETI,Minatec campus,17 Rue des martyrs,38054 Grenoble,法国 2 Univ. Grenoble Alpes,CEA,CNRS,Grenoble INP*,INAC,SPINTEC,F-38000 Grenoble,法国 摘要 — 自旋轨道扭矩磁性 RAM (SOT-MRAM) 方法代表了一种通过分离读取和写入路径来克服自旋转移扭矩 (STT) 存储器限制的新方法。由于每个位单元有两个晶体管,因此它对于不需要非常高密度的高速应用尤其有用。本文介绍了一种基于单个晶体管和单向二极管的高密度 SOT-MRAM 存储器阵列。这种方法有三个优点。 32kb 存储器阵列的晶体管数量减少了 45%,与传统 SOT 位单元相比,单元密度提高了 20%。此外,读取操作所需的控制更少,最终可实现高耐久性、高速度和高密度。关键挑战在于在感测裕度和读取能量之间进行调整。
光合作用被认为是维持星球生命的基础,而光收获是光系统的第一步,并激活了随后的光化学反应。然而,太阳辐射光谱和叶绿体的吸收曲线之间的不完全匹配限制了光合色素对阳光的完全吸收和利用。在这里,我们设计了两个新的聚集诱导的发射(AIE)活性分子,其活性烷基(TPE-PPO和TPA-TPO),并通过易于的无金属金属“单击”反应实现了对活叶绿体的实质性操纵。由于匹配的光物理特性,AIE发光剂(Aiegens)可以收集有害的紫外线辐射(HUVR)和光合效率低下的辐射(PIR),并进一步将其转化为光合作用的活性辐射(PAR),以吸收叶绿素。结果,共轭的Aiegen-Cloroplasts表现出更好的水分分离能力和三磷酸腺苷(ATP)生成的能力,这是光合作用中重要的产物。这是报道的第一个基于AIEGEN的共轭策略,用于改善太阳能利用率和增强光合作用效率。