电荷尺度数字对模拟转换器的准确性和性能(DACS)(图1(a))取决于二进制加权电容器比率,这可能会受到MIS匹配的干扰。关键因素是电容器阵列中单位电容器C U的选择。由于n位二进制加权DAC使用2 N单位电容器来提供所需的电容器比率,其面积,总电容和功率用n呈指数增加。选择较小的C u会降低阵列的大小并减少沉降时间,这是因为电容器充电/排放电容器的较低时间常数。但是,较小的C U导致更大的随机不匹配和线性问题。在文献中,经常在经验上选择C U。在[1]中尝试确定最小C U的系统方法,但模型是建立在较旧的散装技术节点上的,而忽略了电线寄生虫和随机变化的影响;特别是在FinFET节点中,这些效果可能很重要。此外,它们无视对关键DAC线性指标的影响。在[2]中,研究了寄生能力的某些组成部分对增益误差和热噪声的影响,但是该工作并未探索一种发现C U的方法。我们提出了一种系统的方法,用于查找最佳的单位电容,C u,该方法考虑了系统的和随机变化,电线寄生虫,频噪声,热噪声和电路级性能指标,包括线性。
在能量受限的应用中,例如无线传感器节点、植入式医疗设备或便携式娱乐设备,为了延长系统电池寿命,必须采用超低功耗电路。具有中等采样率(0.01-1 Msps)和分辨率(8-10 位)的 ADC 是此类设备的关键组件。在不同的转换器架构中,SAR ADC 是最佳选择,因为它在功率效率、转换精度和设计复杂性之间实现了良好的平衡。在这种转换器中,主要的功耗源是数字控制电路和电容式 DAC 阵列。虽然数字功耗受益于技术进步,但电容阵列导致的功耗受到电容不匹配的限制,这几乎与技术无关。为此,已提出了大量 DAC 拓扑和开关算法,以在不影响精度的情况下降低 DAC 功耗。最新趋势是依靠传统二进制加权 (CBW) 阵列的高线性特性,采用亚 fF 范围内的全定制单位电容 [ 1 – 3 ]。事实上,通用设计套件提供的电容最小值远大于满足线性要求所需的值,导致阵列电容相当大,从而导致开关功率很高。这种方法需要额外努力来设计和建模单位电容或误差校正技术,从而增加了面积和电路复杂性。