─ 功率密度 [kW/dm 3 ] ─ 单位重量功率 [kW/kg] ─ 相对成本 [kW/$] ─ 相对损耗 [%] ─ 故障率 [h -1 ]
比较各种调整的坐标差异标准偏差。来自地带的相机数据。........来自奥尔巴尼的相机数据。.• .....使用不同控制 AGPS 与 NOAA 飞行中的奥尔巴尼进行块调整。控制的标准误差。• • .• .• AGPS 单位重量标准误差 FORBLK 单位重量标准误差 SAS 系统 ..........奥尔巴尼标准误差 ........地面控制和相机位置 x 坐标差异的标准偏差 .............. ...地面控制和相机位置的 y 坐标差异的标准偏差 .................地面控制和相机位置的 z 坐标差异标准偏差 .............地面控制和相机位置的 x 照片坐标残差差异的标准偏差 .....地面控制和相机位置的 y 照片坐标残差差异的标准偏差 92 通过 AGPS 飞行 ........FORBLK 中使用的权重 ....动态相机控制和地面控制光束法平差之间的差异 ....伪距相机控制和地面控制光束法平差控制和图像残差之间的差异 ...控制中的标准误差(按 AGPS 的 Albany 权重计算) .• ..• 外部方向元素
比较各种调整的坐标差异标准偏差。来自地带的相机数据。........来自奥尔巴尼的相机数据。.• .....使用不同控制 AGPS 与 NOAA 飞行中的奥尔巴尼进行块调整。控制的标准误差。• • .• .• AGPS 单位重量标准误差 FORBLK 单位重量标准误差 SAS 系统 ..........奥尔巴尼标准误差 ........地面控制和相机位置 x 坐标差异的标准偏差 .............. ...地面控制和相机位置的 y 坐标差异的标准偏差 .................地面控制和相机位置的 z 坐标差异标准偏差 .............地面控制和相机位置的 x 照片坐标残差差异的标准偏差 .....地面控制和相机位置的 y 照片坐标残差差异的标准偏差 92 通过 AGPS 飞行 ........FORBLK 中使用的权重 ....动态相机控制和地面控制光束法平差之间的差异 ....伪距相机控制和地面控制光束法平差控制和图像残差之间的差异 ...控制中的标准误差(按 AGPS 的 Albany 权重计算) .• ..• 外部方向元素
警告!有移动重型设备和电击的风险。会导致设备损坏,伤害和死亡。处理UPS机柜时,请进行极端护理,以避免设备损坏或人员伤害。功率的重量范围9000 1250 KVA模块化UPS从910到1430 kg(862至2308 lb)。在处理UPS之前,请确定单位重量并找到重心符号。在运输机柜之前测试升降机并平衡柜子。从不倾斜设备超过垂直度。如果发生涉及电气设备的火灾,则仅使用二氧化碳灭火器或被批准用于击打电火的碳。进行维护时需要格外小心。不断意识到UPS系统包含高直流和交流电压。在接触之前,请先检查AC和DC电压测量器的电压。
其中: ,K = 表面最小允许应力,AN/m2F p= 考虑排水的折减系数 p = 1.0(若无排水、排水无法使用或下游表面出现开裂) p = 0.4(若使用排水)。γ = 水的单位重量,AN/m3F h= 水面以下深度,AmF = 升力面材料的抗拉强度,AN/m2F SF= 安全系数 安全系数 3.0 应用于通常情况,2.0 用于非常情况,1.0 用于极端荷载组合。根据 USBR (1987),只要地震事件后满足应力和稳定性标准,极端条件下允许开裂,但新建大坝的通常和非常情况荷载均不允许开裂。
OH 标志和 ES 杆的 CIDH 桩基要求最小摩擦角 (phi) 为 30 度,无粘性土壤的总单位重量至少为 120 pcf,粘性土壤的不排水剪切强度为 1.5 ksf。使用 CIDH 桩基的 OH 标志可以放置在坡度高达 2H:1V 的斜坡上或附近。使用 CIDH 桩基的 ES 杆可以放置在坡度高达 2H:1V 的斜坡上或附近,前提是当 ES 杆放置在 4H:1V 和 2H:1V 之间的斜坡上或附近时,CIDH 嵌入深度增加一个桩直径(标准平面图 ES 11)。
与常规的锂离子爆炸相反,固态锂离子电池的特征是固体不易燃电解质,也充当分离器。这可以通过减少被动组件并创建具有更高能量的单位重量和体积能量的单元格,从而使某些组件降低到某些组件。固体电解质对温度,物理损害以及过度充电和深层排放的变化更宽容。实际上,与传统的锂离子4相比,它们承诺将更安全,更持久。开发SSB的主要目标是提高安全性,更好的性能和降低成本5。这可以通过改善电池电池(较高的能量密度),电池组(专注于安全/最佳单元格集成)以及制造设备和过程(高吞吐量,可靠性,安全性)来实现。
单位重量 5.5 千克(含电池) 电源电压 6V DC 电池(4 x 1.5V 碱性“D”电池) 电流消耗 睡眠模式 通常为 106 μ A LCD 活动 通常为 323 μ A 检查探头平均 4mA GSM 传输最大 200mA。典型电池寿命 > 2 年 电池低阈值 4.5V 保险丝 FS1 100mA 可复位保险丝 FS2 F 100mA H 250V 1500A 断路容量 FS3,4 Littelfuse 0242.050UAT1 50mA 250V 4000A 断路容量 FS5 Littelfuse 0242.100UAT1 100mA 250V 4000A 断路容量 FS6 T 3.15AH 250V 1500A 断路容量 最大探头电缆长度 200m(小于表 3 中的值将被超过) 光电隔离输出(CN1)U m = 253Vrms。此输出设计用于切换高达 12V、100mA 的直流信号 信标输出(CN8)11.2V DC,最大 100mA 表 1 - 电气规格
理解标准化摄取值、其方法和使用意义 古人仅依靠视觉来解释天空中的明亮物体。但随着技术的进步,人们可以量化恒星距离,从而获得绝对星等。类似地,在 PET 中,标准化摄取值 (SUV) 开始用作补充视觉解释的工具。摄取标准化为注射剂量/单位重量的分数,早在 1941 年就已开始使用 ( 1 )。它被指定为差异吸收率 (DAR),并在 20 世纪 80 年代用于 PET ( 2 )。文献中偶尔会出现诸如微分(或剂量)摄取比率 (DUR) 和标准化摄取比率 (SUR) 之类的别名。SUV 是使用中的一类无量纲 Q(� 单位体积平均活性)比率的特殊成员:组织 Q � 标准化 Q。后者可以是对侧、背景、器官(例如肝脏、大脑等),特别是全身,因为 SUV � 组织 Q � 全身 Q(包括示踪剂排泄物)� 组织 Q � 每单位身体体积、重量或面积的注射剂量。对于(时间不变的)分母——而不是整个身体周围的感兴趣区域(ROI)或使用体积单位——有传统且方便的重量或体表面积用法,允许人们获得有量度的(以 mg/mL 或 m 2 /mL 为单位)结果。当对整个身体取平均值时,SUV(以 mg/mL 为单位)等于身体密度。SUV 通常被称为半定量分析,其受欢迎程度归功于方法的简单性,可与
促卵泡激素 (FSH) 是哺乳动物生殖的重要调节剂,尤其是对雌性而言。抑制素是性腺中产生的 TGFβ 家族配体,可抑制垂体促性腺激素细胞合成 FSH。抑制素需要辅助受体 betaglycan 或 TGFBR3L 来介导其功能。与对照组相比,促性腺激素特异性 betaglycan 缺失或 Tgfbr3l 整体缺失的雌性小鼠的卵泡发育、排卵卵子数量和产仔数均有所增强。两个辅助受体均被敲除的雌性小鼠(以下称为 dKO)的 FSH 水平、卵巢大小和自然周期排卵卵子数量均显著增加。dKO 卵子具有受精能力,雌性小鼠会怀孕,并且胚胎第 7.5 天 (E7.5) 植入的胚胎数量显著增加。然而,dKO 雌性小鼠不会生下活的后代。到 E10.5 时,dKO 雌性小鼠的胎盘单位重量下降,许多胚胎出现形态异常。到 E14.5 时,dKO 雌性小鼠的大多数胚胎已死亡并被吸收。野生型代孕小鼠在移植对照组或 dKO 雌性小鼠的胚胎后生下活体幼崽。相反,对照组小鼠而非 dKO 雌性小鼠会将野生型胚胎带到足月。这些数据表明 dKO 小鼠的母体环境无法支持成功怀孕。事实上,使用阿那曲唑抑制怀孕的 dKO 雌性小鼠的雌激素产生可增加 E12.5 时的活体胚胎数量,这表明雌激素在怀孕期间升高,不利于胚胎发育。FSH 在妊娠期间也会升高。FSH 和雌激素都与胎盘血管生成有关。我们目前正在研究 E7.5 和 E10.5 时的胎盘单元形态,以确定异常胎盘发育是否可能导致 dKO 女性不孕。这些实验将显示垂体促性腺激素抑制素作用的丧失如何阻碍胚胎存活。