帕金森氏病是最普遍的神经退行性运动障碍(Poewe等,2017; Dorsey等,2018; Balestrino和Schapira,2020; Aarsland等,2021)。Although its pathogenesis involves a wide range of pathways and mechanisms, including mitochondrial dysfunction, oxidative stress, calcium dyshomeostasis, impairment of axonal transport and neuroin fl ammation, a major histopathological hallmark of the disease is the presence of α -synuclein aggregates known as Lewy bodies ( Spillantini et al., 1997 ; Spillantini等,1998)。这些聚集体通过复杂的动力学过程形成,该过程涉及相互交织的微观步骤(Knowles等,2009; Buell等,2014)。在通常由脂质膜催化的过程中,最初是从单体前体从单体前体到原代成核形成的小寡聚组件(Galvagnion等,2015; Flagmeier等,2016; Galvagnion et al。,2016)。最初被无序的低聚物可以转化为有序形式(Cremades等,2012),它们可以通过单体依赖性伸长来长成长纤维(Knowles等,2009; Buell等,2014; Galvagnion; Galvagnion et al。这些纤维的存在可以催化新的寡聚组件的形成,在负责α-突核蛋白沉积物快速增殖的自催化过程中(Knowles等,2009; Buell等,2014; Galvagnion; Galvagnion et al。此过程被称为二级成核,因为它取决于已经形成的淀粉样蛋白纤维的存在,并且通常比原代成核更快。由于α-突触核蛋白的聚集是细胞毒性的,特别是通过寡聚中间体的形成(Winner等,2011; Fusco et al。,2017; Cascella等,2021),
DNA 梳理和 DNA 扩散是研究全基因组 DNA 复制叉动态的两种主要方法,它们将标记的基因组 DNA 分布在盖玻片或载玻片上进行免疫检测。DNA 复制叉动态的扰动会对前导链或滞后链的合成产生不同的影响,例如,在复制被两条链中的一条上的病变或障碍物阻断的情况下。因此,我们试图研究 DNA 梳理和/或扩散方法是否适合在 DNA 复制过程中分辨相邻的姐妹染色单体,从而能够检测单个新生链内的 DNA 复制动态。为此,我们开发了一种胸苷标记方案来区分这两种可能性。我们的数据表明,DNA 梳理可以分辨姐妹染色单体,从而可以检测链特异性改变,而 DNA 扩散通常不能。这些发现在从这两种常用技术获得的数据解释 DNA 复制动态时具有重要意义。
发现,基于生物的α-甲基二氨基二甲酰基酮和α-亚甲基γ-谷氨酸甲酰胺(膜)(膜)具有与化石基甲基甲基甲酸酯(丙烯酸酯)单体相似的化学结构,能够与化石基于化石基于化石的均值相似甚至具有优质性能。单体反应性的差异会影响共聚物的结构,这反过来影响聚合物特性,例如热行为(玻璃过渡温度)。通过自由基悬架聚合将膜掺入在可热膨胀微球的聚合物壳中后,对这些特性进行了评估。用基于生物的膜代替基于化石的甲基甲基丙烯酸甲酯(MMA)导致部分基于生物的可热膨胀微球(TEMS),从而发现随着膨胀温度的升高,膨胀性能受到影响。甚至有可能与完全基于化石的聚合物壳的TEMS相比,具有完全生物的聚合物壳的TEMS,其膨胀温度窗口要高得多。
摘要:为了设计出在进一步优化阶段有较高成功率的先导化合物,应解决药物-靶标相互作用、细胞内化和靶标参与问题。因此,我们设计了叶酸与抗癌肽的结合物,它能够结合人胸苷酸合酶 (hTS) 并通过几种癌细胞高表达的叶酸受体 α (FR α ) 进入癌细胞。机制分析和分子建模模拟表明,这些结合物与 hTS 单体-单体界面的结合力比酶活性位点大 20 倍以上。在几种癌细胞模型上测试时,这些结合物在纳摩尔浓度下表现出 FR α 选择性。当结合物与抗癌剂以协同或附加组合方式递送时,观察到类似的选择性。与 5-氟尿嘧啶和其他靶向 hTS 催化口袋的抗癌药物不同,这些结合物不会诱导该蛋白质的过度表达,因此可以帮助对抗与高 hTS 水平相关的耐药性。■ 简介
薄膜复合材料(TFC)膜由于可控的微结构而逐渐取代了高增值药物成分的提取,分离和浓度中的一些传统技术。然而,迫切需要设计具有高渗透率和有效分子选择性的溶剂稳定,可扩展的TFC膜,以提高分离过程中的分离效率。在这里,我们提出了一种商用酸碱指示剂苯酚胺,作为一种经济单体,用于优化选择性层的微孔结构,厚度降低至原位界面反应形成的30纳米。分子动力学模拟表明,使用三维Phe-Nolphthalein单体制备的多氧化膜膜表现出可调的微孔度和较高的孔隙互连性。此外,TFC膜显示出高甲醇的渗透率(每小时9.9±0.1升 /平方米)和有机溶剂系统中有机微污染物的小含量截止(≈289daltons)。与传统的聚酰胺膜相比,多核心膜具有更高的机械强度(2.4对0.8 gigapascals)。
摘要:阐明电荷序列对聚电解质构象的影响对于理解许多生物物理过程并推进序列定义的聚合物材料的设计很重要。可以使用多肽研究这种作用,该效应允许与精确的单体序列合成聚合物链。在这里,我们使用单分子力实验来探索电荷间距对多肽构象的影响。我们测试了由亲水性且无带电或负电荷的单体组成的多肽序列。我们发现链持续长度对净电荷和离子强度不敏感。随着溶液的增加离子强度,我们观察到溶剂质量的良好到表面的转变,其theta点随电荷间距而缩放。因此,我们的结果揭示了静电驱动的排除体积效应和不敏感的局部构象柔韧性之间的复杂相互作用,我们认为这与带电组在侧链上的位置有关。■引入生物聚合物,例如核酸和蛋白质,将它们的结构和功能直接编码到其序列中。这激发了序列定义的聚合物材料的设计,其工程结构和功能复杂性接近自然界中的序列和功能复杂性。1-4此类材料的从头设计需要对单体序列如何影响聚合物的结构和结构的基本理解。8,9例如,发现由具有较长电荷块的链形成的复杂凝聚力具有较高的临界盐浓度。8,9例如,发现由具有较长电荷块的链形成的复杂凝聚力具有较高的临界盐浓度。具体而言,已经广泛探索了聚电解质中的静电效应,因为它们可以驱动结构形成以及与环境中其他分子的相互作用。调节聚电解质的电荷序列已显示出显着改变其构象行为5-7以及在许多生物物理过程中的活性。10,11
塑料几乎在现代社会的每个方面都变得普遍,使其成为最广泛使用的合成材料(Sánchez等,2011; Worm等,2017)。其固有的特性,例如耐用性,可塑性,透明性和惰性,在环境中的持续性有助于其持续性,从而导致了塑料积累的紧迫问题。实际上,塑料占土地填充物数量总数的20%,这使垃圾填埋场成为不可持续的选择,这是由于塑料的延长降解时间(Sánchez等,2011)。有效的塑料废物回收已被确定为塑料回收领域的下一个主要挑战,需要开发新过程(Hopewell等,2009)。当前的回收实践使用机械研磨,熔体过滤,挤出和颗粒化来生产用于二级制造的树脂。但是,这些过程通过链分裂降低了聚合物的性能,从而导致分子量降低,从而影响聚合物熔体的粘弹性特性。没有办法升级再生材料以使其更有价值(例如,通过溶剂辅助过程,通过删除添加剂,杂质和低聚物来生产食品级树脂),目前的再循环效果的经济可行性可能不足以鼓励大规模的循环效果。化学回收塑料废物到可重复使用的单体被认为是解锁圆形性的关键,只要该过程可以在闭环中有效地进行。尽管在当前实践中很难实现,但是有一种新发现的称为Polydiketoenamine(PDK)的材料,可以作为新塑料经济的圆形聚合物(Helms,2022)。PDK树脂是由可商购的胺单体和新型Triketones产生的,这些单体是从1,3-二酮和二羧酸合成的(Demarteau等,2022)。pdk树脂由于动态键合的动态粘合而表现出热塑性和热固性的特征,该粘结具有良好的文献记载且独有的动态共价聚合物网络(Scheutz等,2019; Jin等,2019; Yue等,2020)。PDK树脂可以以相对较高的产率(90-99%,取决于公式)以相对较高的产量(90-99%)恢复原始质量单体(Demarteau等,2022)。可以生产,使用,回收和重新使用的PDK树脂的性质而不会丢失价值,这表明可以产生具有最小环境影响的可持续聚合物的可能性(Christensen等,2019)。
设计,供应,安装,测试和调试在网格屋顶上进行170千瓦的顶部,定制建造高升高,结构较高的太阳能发电厂,具有双面的单体PERC太阳能模块,其容量高于580 wp及以上或上面或超过580个双面太阳能PV模块,该模块具有580wp的580wp和5年级的CMC组合,均可在580wp下进行,该公司的运转均高于580wp and Comc Compl Hyderabad用于TGREDCO和TGSPDCL。设计,供应,安装,测试和调试在网格屋顶上进行170千瓦的顶部,定制建造高升高,结构较高的太阳能发电厂,具有双面的单体PERC太阳能模块,其容量高于580 wp及以上或上面或超过580个双面太阳能PV模块,该模块具有580wp的580wp和5年级的CMC组合,均可在580wp下进行,该公司的运转均高于580wp and Comc Compl Hyderabad用于TGREDCO和TGSPDCL。
ii)作业提供描述在可编程聚合物实验室中的DOC职位,由DR领导。哈布。in。rószweda,Amu教授。项目描述:如今,聚合物合成的进展可以完全控制具有生物学精确度的单体序列。但是,要实现他们的实际使用,必须开发一种可持续且高效的方法。可以预期,可以通过选择适当的单体字母的选择来设计序列定义的大分子将其折叠成特定的3D结构,因为它是天然大分子的观察到的。然而,到目前为止尚未研究具有定义的一级结构的非天然大分子的单链折叠,尚未研究将其组装成复杂的超分子结构。该项目旨在获取有关序列调节的层次聚合物自组装的知识,这是创建具有结构性复杂和复杂功能的合成材料所必需的,并由生命物质表示。该项目获得了国家科学中心的资金(2021/43/i/st4/01294)在Opus Lap竞赛中。
对聚合物生产过程的可持续性评估对于评估其环境,社会和经济影响至关重要,但研究仍然很差。本章旨在提高学术界,工业和民间社会对此问题的研究人员和读者的认识,以及评估聚合物绿色的一些简单明了的方法。到此为止,它始于减少聚合物废物的概述,然后是减少产生的废物的主要方法。然后,它在更多详细信息中描述了如何随时可用的绿色指标,例如环境因素(电子因素),可以帮助评估制造过程和聚合物产品,并确定可以进行改进的领域。然后,它描述了可以与E-因子一起使用的方法,以更好地评估生产过程的可持续性,同时还显示了与这些方法相关的局限性/挑战。提出了来自生物质的聚合物发育的主要方法,然后重点介绍了广泛使用的木质素衍生的单体和聚合物(例如香草蛋白)的示例的电子因素计算,以及左旋葡萄糖剂衍生的单体剂和聚合物的快速发展的领域。还提供了改善(可持续)聚合物化学领域的未来方向。
