编辑质体基因组有助于了解质体基因的分子功能和设计作物所需的性状(Maliga,2022 年)。DddA 衍生的胞嘧啶碱基编辑器 (DdCBE) 能够在线粒体和质体基因组中进行 C 到 T 的编辑(Kang 等人,2021 年;Li 等人,2021 年;Mok 等人,2020 年;Nakazato 等人,2021 年)。最近,Cho 等人(2022 年)开发了 TALE 连接脱氨酶 (TALED),可以催化人类线粒体中的 A 到 G 碱基转化。利用 DddA 毒性的发现(Cho et al ., 2022 ),我们通过探索两种胞苷脱氨酶生成了用于质体编辑的新型单体 TALE 连接的 CBE:具有宽编辑窗口的人类 APOBEC3A 变体(hA3A-Y130F)(Ren et al ., 2021 )和基于 TadA 的改良胞苷脱氨酶(Lam et al ., 2023 ),分别生成 mTCBE 和 mTCBE-T。此外,我们还探索了一种可以同时脱氨胞嘧啶和腺嘌呤的 TadA 衍生脱氨酶(Lam et al ., 2023 ),以设计一种双碱基编辑器,名为 mTCABE-T。这些脱氨酶此前均未在植物或人类的细胞器基因组编辑中进行过研究。我们首先组装了针对三个水稻质体基因的左或右 TALE 阵列,这三个基因编码光系统 II 的核心成分( OsPsbA )、光系统 I ( OsPsaA )和 30S 核糖体亚基 RNA 成分( Os16SrRNA )。构建了三个单体质体碱基编辑器以及 DdCBE 和 Split-TALED 对照,用于在水稻中表达(图 1a )。我们通过靶向扩增子深度测序评估了再生水稻愈伤组织中的碱基编辑效率。令人印象深刻的是,mTCBE 诱导了高效的 C 到 T 转换,在 OsPsbA 、OsPsaA 和 Os16SrRNA 处的平均编辑频率分别为 42.3%、21.6% 和 19.4%(图 1b-d)。 DdCBE 催化 C 到 T 的转化,在这些目标位点的平均编辑效率分别为 7.8%、33.5% 和 34.2%(图 1b-d)。相比之下,mTCBE-T 的效率低于 mTCBE,C 到 T 的编辑效率为
由126种在全球范围广泛的物种组成,在热带东南亚国家,例如印度尼西亚,马来西亚,缅甸,缅甸,柬埔寨,泰国,泰国,甚至是南亚地区,即印度,即印度。1,2 Kaempferia Galanga L.在印度尼西亚被称为Kencur,已在经验上被约109个族裔使用。在印度尼西亚,Kaempferia Galanga出现在苏门答腊,爪哇,卡利曼丹,东努萨·坦加拉,苏拉威西和马卢库的几个地区。3,它排名第16位是使用最广泛的药用植物。4 Kaempferia galanga根茎传统上被用作抗内部的弹药,镇痛,抗菌,抗氧化剂,杀性性和血管肌。5 - 14 kaempferia galanga L.的根茎和叶子具有治疗伤口,头痛,溃疡,普通感冒,咳嗽,哮喘和乳腺癌的特性。15 - 17在2014年,Kumar报告说,Kaempferia Galanga L.的根茎含有多达50个挥发性油15 - 17在2014年,Kumar报告说,Kaempferia Galanga L.的根茎含有多达50个挥发性油
新复制的姐妹染色单体由粘蛋白复合物束缚在一起,但是姐妹染色单体内聚力如何与DNA复制协调不足。流行模型表明在复制之前与DNA结合的粘着蛋白通过复制通过粘着蛋白环的复制或通过重现叉子在复制叉后通过重壳组件的转移来确定凝聚力。通过可视化与预加载的粘蛋白复合物碰撞的单个复制叉,我们发现重质体将粘蛋白推向满足收敛的重新分散体的位置。虽然在DNA复制终止期间去除收敛的重新分裂,但粘蛋白仍保持在新生的DNA上。我们证明了这些粘着蛋白分子将新复制的姐妹DNA系在一起。我们的结果支持了一个新模型,其中在DNA复制终止期间建立了姐妹染色单体内聚。
近年来,生物医学已广泛地集中在开发具有反应性行为和可自定义特性的生物学用途药物输送系统上。在药物载体中,水凝胶可以是合适的选择。由于它们具有特定的表面和结构,可以选择性地维护和运输药物到操作区域,因此它们以有利的时间范围释放,以提供更高的治疗作用。在这里,我们宣布在高内相乳液(HIPES)中宣布聚(藻酸钠(ALG)和2-羟基乙基甲基丙烯酸酯(HEMA))的共聚合物的合成,以产生高度多孔的水凝胶,以产生高度的多孔水凝胶,这些水凝胶已发育为化学疗法药物额肌蛋白(Dox)。可以随着聚合物合成程序中涉及的变量而改变孔隙率的百分比。发达的珠的特征是通过傅立叶变换红外光谱(FTIR),热重分析(TGA)和扫描电子显微镜(SEM)进行表征。在37和42°C的pH 5.4和7.4中研究了体外释放研究,这表明DOX有效地掺入了多孔水凝胶中,并通过pH调节和溶胀损失过程以控制的方式释放。在合成的聚螺旋结构中存在羟基和羧酸基团,增强了所得水凝胶的pH敏感性和肿胀行为,可以选择为响应肿瘤的酸性释放药物,以应对肿瘤的酸性状况,从而为局部局部和有效的癌症治疗提供了有希望的策略和有效的癌症治疗。
Meniere病(MD)是一种慢性内耳障碍,其特征是眩晕攻击,感觉性听力损失,耳鸣和听觉饱满感。因此,通过使用转录组分析,我们发现了支持MD炎症病因的广泛证据,我们旨在描述MD的炎症变体。我们对45例定义MD和15个健康对照的患者进行了大量RNASEQ。MD患者根据其基础IL-1β的基础水平分为2组:高和低。使用Exphunter Suite进行了差异表达分析,并使用估计算法XCELL,ABIS和CIBERSORTX评估细胞类型比例。MD患者显示出15个差异表达的基因(DEG)。顶部DEG包括IGHG1(p = 1.64´10-6)和IgLV3-21(p = 6.28´10-3),支持在适应性免疫反应中的作用。细胞因子促填充定义具有高水平IL-1β患者的亚组,具有IL6上调(p = 7.65´10-8)和INHBA(p = 3.39´10-7)基因。来自外周血单核细胞的转录组数据支持高水平IL6和幼稚的B细胞和记忆CD8 + T细胞的MD患者的临床亚组。
https://doi.org/10.26434/chemrxiv-2024-vgmlz orcid:https://orcid.org/0000-000-0003-2940-3025 content content content content content content content content content contemrxiv note contemrxiv consemrxiv consect许可证:CC BY-NC 4.0
是公开的。然后党A选择私人a∈Z,而党B选择私人b∈Z。party a通信g a,b发送g b,常见的秘密是(g b)a = g ab =(g a)b。第三方C可以访问N,G,G A和G B,但是从已知数据中找到G AB很困难,只要P -1在其因素中包含很大的素数。有很多想法,并且有广泛的文献来构建来自非交通性群体和单体的加密协议(Monoids gen-gen-generallents of consemains of of toce of ofers of of ofers ofers of ofers of ofers ofers of ofers of ofers ofers of ofers ofers of ofers ofers of ofers of ofers of ofers ofers ofers of ofers ofers of ofers ofers of ofers of ofers of of tosepsss,我们从现在开始说),请参见例如。[msu08],[msu11]及其中的参考。此类示例是Magyarik – Wagner公共密钥协议[WM85],Anshel – Anshel – Goldfeld密钥交换[AAG99],KO – Lee等。密钥交换协议[KLC + 00]和shpilrain – zapata公共密钥协议[SZ06]。在文献中,协议中使用的单体s通常称为平台组/单体。在[MR15,第4节]中有大量各种协议和平台单体列表,包括但不限于上述列表。有时这些限制在组或基质组中,有时可以使用一般的单体。本文的一个典型示例是Shpilrain -Ishakov(SU)密钥交换协议,例如[MSU08,第4.2.1节],其工作如下。公共数据是一个单体s,两个集合的通勤元素和g∈S的a,b。party a选择私人a,a'∈A,而party b选择私人b,b'∈A。party a通信Aga',B发送BGB',常见的秘密是ABGB'a'= baga'b'。不使用通勤元素的另一个示例是Stickel的秘密钥匙交换(ST)[ST05]。g,h∈S带有gh̸= hg是公开的,party a pick a,a'∈Z≥0,p partion b picks a,a'∈Z≥0,a发送g a h a',b sends g a h a',b sends g b h b b',常见的秘密是g a g b b b b b b b b b b b'h a'''= g b g a a h a h a h a h a h h a'''。 请注意,在这些协议中,S可以是任意的单体。 S的复杂性决定了从公共数据中找到共同秘密的困难。 如Myasnikov和Roman'kov [MR15]所示,也基于早期的作品,SU和ST协议以及其他精神,上面包括的两个段落,如果S承认S小型非平地代表,则可以成功地受到攻击。 简称这称为线性分解攻击或线性攻击。 线性攻击的后果之一是,有限的非交通性群体可能不适合加密目的,因为它们承认了中等大小的非平凡代表。 在玩具示例中,对称组S N具有N! 元素,但承认忠实的(n-1)维度表示。 该代表的维度在组的大小上小于对数,而对称组对于各种标准非交通性组协议来说将是一个糟糕的选择。 同样,有限的简单谎言类型组通常会接受(通常)与大小相比的(通常)小维度的表示。 少数例外,包括与经典和宽容的协议有关的主要阶阶循环群,对于其他有限的简单组也是如此。g,h∈S带有gh̸= hg是公开的,party a pick a,a'∈Z≥0,p partion b picks a,a'∈Z≥0,a发送g a h a',b sends g a h a',b sends g b h b b',常见的秘密是g a g b b b b b b b b b b b'h a'''= g b g a a h a h a h a h a h h a'''。请注意,在这些协议中,S可以是任意的单体。S的复杂性决定了从公共数据中找到共同秘密的困难。如Myasnikov和Roman'kov [MR15]所示,也基于早期的作品,SU和ST协议以及其他精神,上面包括的两个段落,如果S承认S小型非平地代表,则可以成功地受到攻击。简称这称为线性分解攻击或线性攻击。线性攻击的后果之一是,有限的非交通性群体可能不适合加密目的,因为它们承认了中等大小的非平凡代表。在玩具示例中,对称组S N具有N!元素,但承认忠实的(n-1)维度表示。该代表的维度在组的大小上小于对数,而对称组对于各种标准非交通性组协议来说将是一个糟糕的选择。同样,有限的简单谎言类型组通常会接受(通常)与大小相比的(通常)小维度的表示。少数例外,包括与经典和宽容的协议有关的主要阶阶循环群,对于其他有限的简单组也是如此。也就是说,这些群体相对于它们的顺序承认了小维度的非平凡表示。因为任何有限的G级别都可以在某些有限的简单组上,从而减少了问题
此策略从出版日期起,直到被取代为止。提及“英国税收”是附表19第15(1)段中规定的税款和关税,其中包括所得税,公司税,PAYE,NIC,NIC,VAT,保险费税和印花税土地税。提到“税”,“税收”或“税收”是对英国税收的,以及所有相应的全球税和类似责任,该组织负有法律责任。
1单元IBD,CEMAD,遥远地区,国际医学和Gasstranterology,医学科学和Chirurgic Sciences,资助大学政策“ A. irccs,L。Go A. Gief 8,00168罗马,意大利; latusloris@gmail.com(l.r.l.r.l );光泽。 ); wortsy.betoty@nats。 ); syllable.pecer@polyclines.it(S.P. ); pgpuca@gpoke.com(p.p. ); helis.sscouvotonum@polyclinicles.it(E.S. ); giveElele.napoliaum@polyclinical.it(D.N. );给它。 ); Anony.gsbarrinium@nats.it(A.G.)2医学和艾滋病科学系,“ G。 公告” Chieti-Pescara大学,66100 Chiets,意大利3号高级研究与技术中心(CAST),” G。 公告” Chieti-pescara大学,66100个Chiets,意大利4药物和traslational Schools,大学,Caree Custerms,L。Go F. F. F. F. Little 1,0016 Rome,0016 Rome,0016 Rome,0016 Rome,0016 Romes(Gg。 ); Youth.camcrat@nat.it(G.C。) <2 5 5微生物学,大学政策基金会‘A. ICCS,Caree Sacred University,意大利罗马00168; gianluca.perty@polyclinical。 ); maurice.sanguines@polyclinicles.it(M.S. ); light.mafes@polyclinical.it(l.m.)1单元IBD,CEMAD,遥远地区,国际医学和Gasstranterology,医学科学和Chirurgic Sciences,资助大学政策“ A.irccs,L。Go A. Gief 8,00168罗马,意大利; latusloris@gmail.com(l.r.l.r.l);光泽。); wortsy.betoty@nats。); syllable.pecer@polyclines.it(S.P.); pgpuca@gpoke.com(p.p.); helis.sscouvotonum@polyclinicles.it(E.S.); giveElele.napoliaum@polyclinical.it(D.N.);给它。); Anony.gsbarrinium@nats.it(A.G.)2医学和艾滋病科学系,“ G。公告” Chieti-Pescara大学,66100 Chiets,意大利3号高级研究与技术中心(CAST),” G。公告” Chieti-pescara大学,66100个Chiets,意大利4药物和traslational Schools,大学,Caree Custerms,L。Go F. F. F. F. Little 1,0016 Rome,0016 Rome,0016 Rome,0016 Rome,0016 Romes(Gg。); Youth.camcrat@nat.it(G.C。)<2 5 5微生物学,大学政策基金会‘A.ICCS,Caree Sacred University,意大利罗马00168; gianluca.perty@polyclinical。); maurice.sanguines@polyclinicles.it(M.S.); light.mafes@polyclinical.it(l.m.)6人类微生物组的单位,班比诺GESù儿童医院,IRCCS,00168,意大利罗马; federica.delchierico@opbg.net 7卫生科,大学生命科学系和公共卫生,Cattolica del Sacro Cuore大学,意大利00168,意大利00168; andreaposcia@yahoo.com 8 UOC ISP预防和监视感染和慢性疾病,预防局,地方卫生局(ASUR-AV2),60035 JESI,意大利90035 9 UOC DI GASTROENTEROLOGIA,FONDAZIONE POLICINICO INRICOTIOGemelli” IRCCS, L. Go A. Gemelli 8, 00168 Rome, Italy 10 Unit of Microbiomics and Unit of Human Microbiome, Bambino Ges ù Children's Hospital, IRCCS, 00168 Rome, Italy; lorenza.putignani@opbg.net 11 IBD Center, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan,意大利; Alessandro.armuzzi@unicatt.it *通信:franco.scaldaferri@policlinicogemelli.it或franco.scaldaferri@unicatt.it