酵母基因组删除项目 (SGDP) 使用五株源自酿酒酵母 S288C 的 Dharmacon 酵母敲除 YKO 亲本菌株,生成了一套几乎完整的酵母开放阅读框 (ORF) 敲除。1 使用基于 PCR 的策略将每个 ORF 替换为 KanMX 盒,该盒包含每个删除的独特标签“条形码”。生成了四个不同的突变体集合:交配类型 MATa 和 MATalpha 的单倍体、非必需基因的纯合二倍体和包含必需和非必需 ORF 的杂合二倍体。存储:
在上次修订后的摘要(Efetov&Tarmann 2024b)之后,该亚家族由五个部落组成:Thyrassiini,Pollanisini,Artonini,Cleleini和Procridini。迄今为止,核型仅以Pollanisini和Procridini而闻名。本文介绍了有关单倍体染色体数(n = 31)的信息,该信息首次确定了Artonini Tribe Artonini的代表。Artona Martini Efetov,1997年。先前有关“ Artonini”的信息(Efetov等人2015)指2004年的Pollanisus commoni tarmann,现在是Pollanisini部落的一种。关键词单倍体染色体数; Zygaenidae,Procridinae; Artonini; Artona Martini。引言在鳞翅目中有一些小组,即使在密切相关的物种中,染色体数也有极大的染色体数。在蝴蝶中,我们知道诸如1822年的AgrodiaetusHübner(Lycaenidae)和Erebia Dalman,1816年(Nymphalidae)等群体就是这种情况。以前,我们已经发现Zygaenidae,尤其是在procridinae的家族中也存在极大的染色体数量(Efetov 1998b,2001b,c,2004; Efetov&Tarmann 1999a; Efetov 199a; Efetov等人;2003,2004,2015,2025; Efetov&Parshkova 2003,2004,2005)。在上次修订了Procridinae(Efetov&Tarmann 2024b)之后,该亚家族由五个部落组成:Thyrassiini Efetov&Tarmann,2024年; Pollanisini Efetov&Tarmann,2024年; Artonini Tarmann,1994年; Cleleini Efetov&Tarmann,2024年;和Procridini Boisduval,1828年。2019; Efetov 1996a,b,1997a,b,1998a,1999,2001a,b,2006,2010; Efetov等。对Zygaenidae的核型以及遗传学,形态和生物学的进一步研究对于理解该家族中物种的进化关系以及物种的系统位置可能非常重要(Can等人2006,2011,2014,2018,2019a – c,2022,2023,2024a,b; efetov
1 美国加利福尼亚州斯坦福大学医学院儿科系;2 美国德克萨斯州休斯顿莱斯大学生物工程系;3 美国加利福尼亚州斯坦福大学医学院细胞与基因医学实验室;4 丹麦奥胡斯大学生物医学系;5 丹麦奥胡斯大学奥胡斯高等研究院 (AIAS) 和 6 美国加利福尼亚州斯坦福大学干细胞生物学与再生医学研究所。
Stoke 的最初重点是单倍体不足。基于对 RNA 科学的深入了解,Stoke 正在使用其 TANGO 方法制造称为反义寡核苷酸 (ASO) 的药物,这些药物可与前 mRNA 结合以上调或刺激蛋白质产生。这些 ASO 附着在过早终止密码子所在的区域,并阻止它们被包含在 mRNA 中。如果没有这个信号告诉细胞限制蛋白质产生,mRNA 将继续产生比它本来会产生的更多的蛋白质。虽然 ASO 同时与基因的健康副本和突变副本结合,但 ASO 不会导致突变副本产生任何生产性输出。健康副本会同时完成两者的工作,产生所需蛋白质量的 100%。
在过去的20年中,IMBA一直处于科学发现和社会贡献的最前沿。对社会的贡献的广度令人印象深刻,从共同测试到全球科学界使用的单倍体细胞库和飞行线的集合。所有这些都来自基础研究!重要的是,在IMBA和维也纳生物中心建立了快速互联测试基础的研究人员几十年来一直没有努力。不,社会需要,科学家应用了从研究中获得的知识来开发一些帮助人类的知识。不需要告诉研究人员去哪里。科学家也是公民,并且知道最有趣的问题是什么以及最好的解决方案所在。当需要时,科学家将其知识掌握在需要的地方。
为了保留其品种属性,已建立的葡萄品种(Vitis vinifera L. ssp. vinifera)必须进行克隆繁殖,因为它们的基因组是高度杂合的。马尔贝克是一种源自法国的品种,因生产高品质的葡萄酒而受到赞赏,是品种 Prunelard 和 Magdeleine Noire des Charentes 的后代。在这里,我们将 PacBio 长读段三重合并到从父母遗传的两个单倍体补体中,构建了马尔贝克的二倍体基因组组装。经过单倍型感知的重复数据删除和校正后,获得了两个单倍相的完整组装,且单倍型转换错误率非常低(< 0.025)。单倍相比对确定了 > 25% 的多态性区域。基因注释(包括 RNA-seq 转录组组装和从头算预测证据)导致两个单倍相的基因模型数量相似。利用注释的二倍体组装体对四个表现出浆果组成特征差异的马尔贝克克隆种质进行转录组比较。使用任一单倍体作为参考对成熟果皮转录组进行分析,得到了相似的结果,尽管观察到了一些差异。特别是,在仅以 Magdeleine 遗传单倍型为参考鉴定的差异表达基因中,我们观察到假设的半合子基因的过度表达。克隆种质 595 的浆果花青素含量较高,与脱落酸反应增加有关,可能导致观察到的苯丙烷代谢基因的过度表达和与非生物应激反应相关的基因的失调。总体而言,结果强调了生产二倍体组装体的重要性,以充分代表高度杂合的木本作物品种的基因组多样性并揭示克隆表型变异的分子基础。
为了保留其品种属性,已建立的葡萄品种(Vitis vinifera L. ssp. vinifera)必须进行克隆繁殖,因为它们的基因组是高度杂合的。马尔贝克是一种源自法国的品种,因生产高品质的葡萄酒而受到赞赏,是品种 Prunelard 和 Magdeleine Noire des Charentes 的后代。在这里,我们将 PacBio 长读段三重合并到从父母遗传的两个单倍体补体中,构建了马尔贝克的二倍体基因组组装。经过单倍型感知的重复数据删除和校正后,获得了两个单倍相的完整组装,且单倍型转换错误率非常低(< 0.025)。单倍相比对确定了 > 25% 的多态性区域。基因注释(包括 RNA-seq 转录组组装和从头算预测证据)导致两个单倍相的基因模型数量相似。利用注释的二倍体组装体对四个表现出浆果组成特征差异的马尔贝克克隆种质进行转录组比较。使用任一单倍体作为参考对成熟果皮转录组进行分析,得到了相似的结果,尽管观察到了一些差异。特别是,在仅以 Magdeleine 遗传单倍型为参考鉴定的差异表达基因中,我们观察到假设的半合子基因的过度表达。克隆种质 595 的浆果花青素含量较高,与脱落酸反应增加有关,可能导致观察到的苯丙烷代谢基因的过度表达和与非生物应激反应相关的基因的失调。总体而言,结果强调了生产二倍体组装体的重要性,以充分代表高度杂合的木本作物品种的基因组多样性并揭示克隆表型变异的分子基础。
染色体工程已在酵母中成功尝试,但在包括哺乳动物在内的高等真核生物中仍然具有挑战性。在这里,我们报告了小鼠中的程序性染色体连接,这导致在实验室中产生了新的核型。使用单倍体胚胎干细胞和基因编辑,我们融合了两条最大的小鼠染色体,即染色体 1 和 2,以及两条中等大小的染色体,即染色体 4 和 5。染色质构象和干细胞分化受到的影响最小。然而,携带融合染色体 1 和 2 的核型导致有丝分裂停滞、多倍体化和胚胎致死,而由染色体 4 和 5 组成的较小融合染色体能够传递给纯合后代。我们的结果表明在哺乳动物中进行染色体水平工程的可行性。
摘要 RAS GTPases 是高度保守的蛋白质,参与有丝分裂原信号的调节。我们之前描述了一种由底物衔接蛋白 LZTR1 形成的新型 Cullin 3 RING E3 泛素连接酶复合物,该复合物结合、泛素化并促进 RAS GTPase RIT1 的蛋白酶体降解。此外,其他人还描述了这种复合物还负责经典 RAS GTPases 的泛素化。在这里,我们分析了果蝇和小鼠中 Lztr1 功能丧失突变体的表型,并证明了它们对 RIT1 直系同源物的生化偏好。此外,我们表明 Lztr1 在小鼠中是单倍体充足的,并且可以通过删除 Rit1 来挽救纯合无效等位基因的胚胎致死性。总体而言,我们的结果表明,在模型生物中,RIT1 直系同源物是 LZTR1 的首选底物。
全体会议论文 # 2001 黏连蛋白功能改变对核心结合因子急性髓系白血病增殖的影响 Shannon Conneely、Jason Rogers、Matthew Miller、Jason Guo、Rohit Gupta、Geraldo Medrano、Debananda Pati、Rachel Rau 贝勒医学院/德克萨斯儿童医院,美国德克萨斯州休斯顿 背景:核心结合因子急性髓系白血病 (AML) 是一种常见的儿童 AML,其特征是 inv(16) 或 t(8;21) 病变,这些病变会抑制核心结合因子复合物的功能。尽管这些重排被认为是 AML 的有利风险,但近 30% 的核心结合因子 AML 儿童会复发,这表明需要继续加深对 AML 生物学的了解和寻找新的治疗靶点。黏连蛋白复合体基因突变常见于 t(8;21) AML,但在 inv(16) AML 中从未发现,这表明黏连蛋白在每种核心结合因子 AML 亚型的病理生理学中发挥着独特的作用。目标:本项目的目标是确定黏连蛋白突变如何改变核心结合因子 AML 的生物学特性。我们假设,黏连蛋白正常功能的丧失会增强表达 t(8;21) AML 特征性 RUNX1-CBFA2T1 (RC) 融合蛋白的细胞增殖,并抑制表达 inv(16) AML 特征性 CBFß-SMMHC (CS) 融合的细胞的增殖能力。设计/方法:从黏连蛋白正常 (Smc3 +/+) 或黏连蛋白单倍体不足 (Smc3 +/-) 的小鼠体内采集骨髓细胞。我们利用逆转录病毒转导来表达空载体对照、RC 融合或 CS 融合蛋白。然后将转导的细胞接种在含有干细胞和骨髓促进细胞因子的甲基纤维素中,进行连续接种试验,或移植到致死性辐射受体小鼠体内,以评估对白血病转化的影响。结果:连续接种试验表明,黏连蛋白单倍体不足会增加表达 RC 蛋白的细胞的集落形成能力,并降低表达 CS 蛋白的细胞的集落形成能力。黏连蛋白单倍体不足会改变几种关键造血调节基因的表达,尽管这些影响取决于存在哪种融合蛋白。在小鼠 RC 模型中,无论黏连蛋白功能如何,都会发展为未分化白血病。然而,二次移植模型显示,黏连蛋白功能下降会导致白血病存活时间缩短,骨髓浸润增加。结论:正常黏连蛋白功能的丧失对表达核心结合因子 AML 融合蛋白的细胞增殖有不同的影响。在表达与 t(8;21) AML 相关的 RC 融合的细胞中,黏连蛋白功能的降低在白血病转化之前提供了生长优势,并带来了更具浸润性和侵袭性的白血病表型。或者,黏连蛋白功能下降导致表达 inv(16) AML CS 融合的细胞生长不利,造血基因表达发生显著变化。未来的实验将重点阐明核心结合因子 AML 中黏连蛋白功能下降所改变的潜在细胞机制。