摘要 原核生物通过横向基因转移 (LGT) 从环境中获取基因。环境 DNA 的重组可以防止有害突变的积累,但第一批真核生物放弃了 LGT,转而选择有性生殖。我们在此开发了一个单倍体群体经历 LGT 的理论模型,其中包括两个新参数,即基因组大小和重组长度,这两个参数被以前的理论模型忽略了。真核生物的复杂性与更大的基因组有关,我们证明 LGT 的好处会随着基因组大小的增加而迅速下降。只有通过增加重组长度(与基因组大小相同的数量级)才能抵抗较大基因组的退化——就像在减数分裂中发生的那样。我们的研究结果可以解释在早期真核生物进化过程中对有性细胞融合和相互重组进化的强大选择压力——减数分裂性别的起源。
小麦 ( Triticum spp,特别是 T. aestivum L.) 是一种必需的谷物,人类和动物的营养需求不断增加。因此,有必要利用现代育种技术以及行之有效的方法来提高小麦的产量和遗传增益,以实现必要的生产力提高。这些现代技术将使育种者能够更快、更有效地开发优良小麦品种。本综述旨在强调全球小麦育种中使用的新兴技术趋势,重点是提高小麦产量。本文讨论了引入变异(物种间杂交、合成小麦和杂交;转基因小麦;转基因和基因编辑)、近亲繁殖(双单倍体 (DH) 和快速育种 (SB))、选择和评估(标记辅助选择 (MAS)、基因组选择 (GS) 和机器学习 (ML))和杂交小麦的关键技术,以强调当前小麦育种的机遇以及未来小麦品种的开发。
玉米 ( Zea mays ) 是世界上最重要的粮食作物之一,全球产量最大,为满足人类对食物、动物饲料和生物燃料的需求做出了贡献。随着人口增长和环境恶化,迫切需要采取高效、创新的育种策略来开发高产抗逆的玉米品种,以保障全球粮食安全和可持续农业。CRISPR-Cas 介导的基因组编辑技术 (CRISPR-Cas (CRISPR-associated)) 已成为植物科学和作物改良的有效而有力的工具,并且可能以不同于杂交和转基因技术的方式加速作物育种。在本综述中,我们总结了 CRISPR-Cas 技术在玉米基因功能研究和新种质生成中的应用现状和前景,以提高产量、特种玉米、植物结构、应激反应、单倍体诱导和雄性不育。本文还简要回顾了玉米基因编辑和遗传转化系统的优化。最后,讨论了使用 CRISPR-Cas 技术进行玉米遗传改良所带来的挑战和新机遇。
以评估组织服务,在G组水平上检查了患者的第一个样本和亲戚的供体候选者,并在HLA A,B,C,DRB1,DQB1和DPB1以及ABO和RHD血型中检查。该研究是在EDTA血液样本上进行的,或者在必要时是唾液样本。以确定ABO和RHD血型。HLA1研究还包括用于血液服务的CMV抗体研究,该研究需要单独的血清样品。血液服务的HLA专家正在暂时比较亲戚和患者的HLA-ISDIC或HLA单倍体的结果,并就初步组织性能提供了意见,并在必要时请求合适的人进行HLA2检查的样本。在要求时,在国外组织了组织类型的组织,如果根据HLA1样本,在国外的相对供体居民似乎是HLA-相同的(或者在HLA-iphiphip的供体中,至少是HLA-iphip),至少是他或她的HLA2样品,则在其HLA2样本中进行了验证。
结果:我们从DBAN注册表研究中收集了临床数据,以及文献中的国际注册表报告。在RPS26组中,更多的患者接受了慢性输血或同种异体造血干细胞移植的治疗,这表明RPS26缺陷的患者确实对糖皮质激素的反应较少。在带有C.95-98重复的RPS26-DBAS IPSC线中,与其他DBA或健康IPSC线相比,胚胎体经常在几天后分类,这表明RPS26在胚胎体形成中的特定作用。有趣的是,即使携带此突变的患者表现出非常轻微的DBA表型,IPSC系列也无法产生功能性造血器官。CRISPR CAS9介导的遗传校正恢复了胚胎体的形成,表明RPS26具体作用。我们还将RPS26单倍体供应引入健康的供体IPSC系列,以进一步研究其对胚胎体和造血器官形成的影响。
剪接体是一种极其复杂的机器,在人类中由 5 种 snRNA 和 150 多种蛋白质组成。我们扩展了单倍体 CRISPR-Cas9 碱基编辑以靶向整个人类剪接体,并使用 U2 snRNP/SF3b 抑制剂 pladienolide B 研究了突变体。超敏替换定义了含有 U1/U2 的 A 复合物中的功能位点,但也定义了在 SF3b 解离后的第二化学步骤中起作用的成分中的功能位点。可行的抗性替换不仅映射到 pladienolide B 结合位点,还映射到 SUGP1 的 G-patch 结构域,该结构域在酵母中缺乏直系同源物。我们使用这些突变体和生化方法将剪接体解离酶 DHX15/hPrp43 鉴定为 SUGP1 的 ATPase 配体。这些数据和其他数据支持一种模型,即 SUGP1 通过在动力学阻滞下触发早期剪接体分解来促进剪接保真度。我们的方法为分析人类细胞中必不可少的机器提供了一个模板。
苔藓植物是研究植物进化、发育、植物-真菌共生、应激反应和配子发生的有用模型。此外,它们占主导地位的单倍体配子体阶段使它们成为功能基因组学研究的绝佳模型,允许通过 CRISPR 或同源重组进行直接的基因组编辑和基因敲除。然而,直到 2016 年,唯一公布的苔藓植物基因组序列是 Physcomitrium patens 的序列。近年来,其他几种苔藓植物基因组和转录组数据集已经面世,从而使得在进化研究中进行更好的比较基因组学成为可能。可用的苔藓植物基因组和转录组资源数量不断增加,产生了大量的注释、数据库和生物信息学工具来访问新数据,这些数据涵盖了该进化枝的多样性,其生物学特征包括与丛枝菌根真菌的关联、性染色体、低基因冗余或细胞器转录本的 RNA 编辑基因丢失等。在这里,我们提供了有关苔藓植物基因组和转录组数据库以及生物信息学工具的可用资源指南。
植物细胞,组织和器官培养:整数,形态发生的基本方面:器官发生和体细胞胚发生,克隆传播,人造种子。单倍体,愈伤组织和细胞悬浮培养物的雄激素作用和产生,somaclonal变体的产生,培养物中二级代谢产物的产生,冷冻保存。Somatic hybridization and cybridization : Factors affecting protoplast isolation, culture and plant regeneration, Protoplast fusion-chemical fusion & electrofusion mechanism & techniques, Selection of heterokaryotic fusion products, biochemical selection and physical selection (micromanipulation, flow cytometric characterization and cell sorting), Analysis of hybrids, Somatic hybrids and cybrids for crop improvement.重组DNA技术:基因克隆 - 原理,克隆载体 - 质粒,噬菌体,cosmids&Phagemids;人工染色体,聚合酶链反应 - 原理,类型和应用,RT- PCR;基因组和C DNA库;重组DNA分子的构建及其动员到细菌中;重组克隆的分析,DNA测序。
竹节虫 Medauroidea extradentata 的孤雌生殖生命周期为转基因品系的产生提供了独特的优势,因为原则上在第一代就可以实现同源且稳定的转基因品系。然而,到目前为止,用于操纵其基因的遗传工具尚未开发出来。在这里,我们成功地实施了 CRISPR/Cas9 技术来修改竹节虫 Medauroidea extradentata 的基因组。作为概念验证,我们针对参与眼色素沉着的 ommochrome 途径的两个基因(朱砂和白色,分别为第二和第一外显子)以产生敲除 (KO) 突变体。产卵后 24 小时内进行微注射,重点关注单细胞(和单倍体)发育阶段。产生的 KO 导致朱砂和白色的眼睛和角质层颜色表型不同。纯合朱砂突变体的眼睛和表皮呈现淡色色素沉着,而纯合白色 KO 导致发育中的胚胎完全无色素表型。总之,我们表明 CRISPR/Cas9 可以成功应用于 M. extradentata 的基因组,从而产生表型不同且可存活的动物。现在可以使用这种遗传工具箱,利用孤雌生殖非模式生物创建稳定的转基因品系。
单元1:植物组织培养基础知识术语和植物组织培养的定义的基本概念;体外文化简介;实验室设置;灭菌技术;媒体:媒体组件的各种媒体,构图和意义;植物生长调节剂;微吞噬:腋芽,芽尖,分生组织培养,器官发生,单倍体植物的产生及其应用;卵巢培养物,体外授粉和施肥,花粉培养,花药培养,胚胎培养:历史和方法论,大杂交后,应用,体细胞胚胎发生后的胚胎营救。胚乳培养和三倍体的生产。单元2单元培养单细胞悬浮培养物的应用,突变选择,扩大细胞培养物和生物反应器,原生质体隔离和培养,植物中的DNA转化方法,somaclonal变异和应用,体细胞杂交及其应用及其应用,病毒自由植物,植物自由植物,植物保护,合成植物,合成植物,植物dna dna的应用。毛茸茸的根培养,次生代谢产物,作物改善和伦理学中的转基因,植物蛋白质组学。