获取独家产品信息,尽享促销优惠!立即订阅,不容错过
* 限···时··优惠
基于数据同化和机器学习的组合是一种新颖的方法。新的混合方法是为两个范围设计的:(i)模拟隐藏的,可能是混乱的,动态的,并且(ii)预测其未来状态。该方法在于应用数据同化步骤,在这里进行集合Kalman滤波器和神经网络。数据同化用于最佳地将替代模型与稀疏嘈杂数据相结合。输出分析在空间上完成,并用作神经网络设置的训练来更新替代模型。然后迭代重复两个步骤。数值实验是使用混乱的40变量Lorenz 96模型进行的,证明了所提出的杂种方法的收敛和实用技能。替代模型显示出短期的预测技能,最多两次Lyapunov时,检索正lyapunov指数以及功率密度频谱的更伟大的频率。该方法对关键设置参数的敏感性也会显示:预测技能会随着观察噪声的增加而平稳降低,但如果观察到少于模型域的一半,则突然下降。数据同化与机器学习之间的成功协同作用在这里通过低维系统证明,鼓励对具有更复杂动力的此类混合体进行进一步研究。