X射线检测器可以在非结构测试,辐射暴露监测,安全检查,包装分类,医学诊断和计算机断层扫描(CT)中找到各种应用。在工作原理方面,可以间接或直接检测到X射线辐射。间接地,闪烁体用于将高能量X射线光子转换为可见的荧光,然后通过Pho-Todiode将其转换为电信号。由于能量构造和闪烁体散射的局限性,因此产生高分辨率图像的过程具有挑战性。在X射线检测的直接方法中,半导体材料通常用于将高能X射线直接转换为电信号,从而提供更高的能量转换效率和更好的成像分辨率。最近,已经出现了直接的X射线检测,因此已经出现了高原子数(高Z)材料,例如金属卤化物钙钛矿(MHP),无铅钙钛矿和无机/有机材料。尽管这些材料可以有效地吸收高能量X射线光子,但这些具有低浓度缺陷的高质量单晶材料仍然具有挑战性。因此,由于激发载体的强烈重新支持,基于这些材料的X射线检测器具有相对较低的灵敏度。我们正在研究新材料和结构来解决这个问题。ti 3 C 2 t x mxenes由于其出色的电导率,机械性柔韧性和可调带镜头而特别有吸引力,此外还具有super层水性分散性。One promising option is MXenes, a type of 2D materials that consists of transition metal car- bides or nitrides with the general formula M n + 1 X n T x (where n ranges from 1 to 4, M is an early transition metal like Ti, Sc, or Cr, X can be carbon or nitrogen, and T x represents surface terminal groups such as F, O, OH, and Cl).1与单晶钙钛矿材料相比,Ti 3 C 2 t x mxenes纳米膜更容易通过真空过滤和转移而无需引入杂质而实用。与其他具有高电阻的材料不同,Ti 3 C 2 t X Mxenes的高电导率可以降低设备的总体电阻,从而使设备能够在相对较低的电压下实现X射线检测。与基于硅的底物的出色兼容性