https://doi.org/10.26434/chemrxiv-2023-z6frj-v2 orcid:https://orcid.org/0000-0000-0001-5060-0766 Chemrxiv不同行评审的内容。许可证:CC由4.0
摘要:电子系统与晶格振动的耦合及其时间有关的控制和检测提供了对半导体非平衡物理学的独特见解。在这里,我们研究了使用宽带光泵 - 探针显微镜封装的半导体单层2 h -mote 2的超快瞬态响应。低于40 fs泵脉冲在A'和B'激子共振的光谱区域中极度强烈且长寿的连贯振荡,这是由于最大瞬态信号的约20%,这是由于平面外A 1G语音的位移激发。从头算计算揭示了由平面外拉伸和晶体晶格的压缩诱导的单层MOTE 2的光吸收的重排,与A 1G型振动一致。我们的结果强调了单层TMD对小结构修饰的光学特性的极端敏感性及其用光操纵。关键字:连贯的声子,激子,超快光谱,过渡金属二分法,二维材料,单层,Mote 2 E
网状芯的渗透性对于各种应用都很重要,包括两相传热。然而,人们对单层、独立式网状芯(两侧都有液气界面)的渗透性的理解有限。本文提出了一种新颖且更简单的方法来确定独立芯的渗透性并将其应用于代表性网格。该方法包括通过升高来修改毛细管压力,并同时测量渗透性以确定渗透性-毛细管压力关系。当应用于经过表面清洁的平纹铜网时,发现渗透性随着去离子水的毛细管压力的增加而降低。本文提出了一种维度分析,以将此数据推广到具有类似编织和流体的其他网格尺寸。基于达西定律与测量数据拟合的解析函数的结合,对网格在应用中的行为进行了建模,并根据获得的毛细管压力-渗透率关系进行了参数研究,以研究液体在不同驱动压力、输送长度和液体粘度下通过网格的表观速度。这项研究为网格芯的输送特性提供了宝贵的见解,并可能应用于电子冷却、电化学设备和流体净化技术等领域。
2D 过渡金属二硫属化物 (TMDC) 是原子级厚度的半导体,在晶体管和传感器等下一代光电应用方面具有巨大潜力。它们的大表面体积比使其节能,但也对物理化学环境极为敏感。在预测电子行为(例如其能级排列)时必须仔细考虑后者,这最终会影响器件中的电荷载流子注入和传输。这里展示了局部掺杂,从而通过化学工程改造支撑基板的表面来调整单层 TMDC(WSe 2 和 MoS 2)的光电特性。这是通过使用两种不同的自组装单层 (SAM) 图案的微接触印刷来装饰基板来实现的。SAM 具有不同的分子偶极子和介电常数,显著影响 TMDC 的电子和光学特性。通过分析(在各种基底上),可以确认这些影响完全来自 SAM 和 TMDC 之间的相互作用。了解 TMDC 所经历的各种介电环境可以建立电子和光学行为之间的关联。这些变化主要涉及电子带隙宽度的改变,可以使用肖特基-莫特规则计算,并结合 TMDC 周围介质的屏蔽。这些知识可以准确预测单层 TMDC 的(光)电子行为,从而实现先进的设备设计。
低阈值光学非线性的潜力在光子学和概念光学神经元网络领域引起了广泛关注。二维 (2D) 半导体中的激子在这方面尤其有前景,因为减少的屏蔽和维度限制会促进它们明显的多体相互作用以实现非线性。然而,对这些相互作用的实验测定仍然不明确,因为光泵浦通常会产生激子和未结合载流子的混合物,其中带隙重正化和载流子屏蔽对激子能量的影响相互抵消。通过比较单层 MoSe 2 光致发光光谱对激子基态和激发态能量的影响,我们能够分别识别中性激子和电荷载流子对库仑结合的屏蔽。当中性激子密度从 0 增加到 4 × 10 11 𝑐𝑚 −2 时,激子基态 ( A-1s ) 和激发态 ( A-2s ) 之间的能量差红移 5.5 meV,而电子或空穴密度增加时则发生蓝移。这种能量差变化归因于中性激子的库仑结合相互屏蔽,从中我们提取出激子极化率为 𝛼 2𝐷
b'show电子特性,从半导体到超导。[4]分层TMDC的整体结构由堆叠的X \ Xe2 \ X80 \ X93M \ X93M \ Xe2 \ X80 \ X93X三明治组成,这些三明治通过van der waals相互作用将其固定在一起。[5,6]由于与内部的共价键相比,层间相互作用的弱点,因此单个X \ Xe2 \ X80 \ X93M \ X93M \ Xe2 \ X80 \ X80 \ X93X平板(也称为单层或单层)可以在相关的方式中隔离。主多型型为1T,2H和3R,其中字母数字代码指示X \ Xe2 \ X80 \ X93M \ X93M \ Xe2 \ X80 \ X80 \ X93X三明治每单位单元单元格以及结构对称性(H = H = Hexagonal,T = Totragonal,R = Totragonal,R = Rhombohed)。[5] MOS 2是层状TMDC低毒性的典型示例。[7] 2H(或单层特定情况下的1H)和1T是MOS 2的最探索类型。2H MOS 2具有三角骨结构,在热力学上是稳定的,可以在自然界中作为钼矿物矿物质。[8]当散装2H MOS 2缩小到1H单层时,它会从'
我们使用van der waals(vdw) - 纠正的密度函数理论和非平衡绿色的功能方法研究了DNA核苷酸酶[腺嘌呤(A),鸟嘌呤(g),胸腺嘧啶(T)和胞嘧啶(C)]与单层Ti 3 C 2 MXEN的相互作用。所有计算均针对石墨烯进行了基准测试。我们表明,取决于Ti 3 C 2表面上方的核碱基的初始垂直高度,可能是两个相互作用机制,即物理吸附和化学吸附。对于石墨烯,与石墨烯片上方核碱基的初始垂直高度无关,DNA核碱始终将物理呈现在石墨烯表面上。石墨烯的PBE + VDW结合能高(0.55-0.74 eV),并遵循G> a> t> C的顺序,吸附高度在3.16–3.22Å的范围内,表明强大的物理学。对于Ti 3 C 2,PBE + VDW结合能相对较弱(0.16-0.20 eV),并遵循A> g = T> C的阶,吸附高度在5.51–5.60Å的范围内,表明弱物理吸收。化学物质的结合能遵循g> a> t> c的顺序,这是相同的物理学顺序。结合能值(5.3-7.5 eV)表示非常强的化学吸附(约为物理吸附结合能的40倍)。此外,我们的频带结构和电子传输分析表明,对于物理吸附,频带结构没有显着变化,也没有调制状态的传输函数和设备密度。相对较弱的物理吸附和强烈的化学吸附表明,Ti 3 C 2可能无法使用物理吸附方法鉴定DNA核碱基。
高效有机发光二极管 (OLED) 通常由多层堆栈组成,包括电荷传输层、电荷和激子阻挡层,以将电荷复合限制在发射层内。本文展示了一种基于热激活延迟荧光的高度简化的单层蓝光 OLED,其发射层简单地夹在由聚合物导电阳极和金属阴极组成的欧姆接触之间。单层 OLED 的外部量子效率为 27.7%,高亮度下滚降很小。内部量子效率接近 1,表明高度简化的无限制层单层 OLED 可以实现最先进的性能,同时大大降低设计、制造和设备分析的复杂性。
©作者2023。开放访问。本文是根据Creative Commons归因4.0国际许可证的许可,该许可允许以任何媒介或格式的使用,共享,适应,分发和复制,只要您适当地归功于原始作者和来源,就可以提供与Creative Commons许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/。