b“氧扩散,在整个共培养室中产生氧梯度。含有10%氧气的基底外侧气流通过气体入口进入,并用磁性搅拌器均匀地通过不对称的共培养室扩散。排气通过气体插座排放,完成了系统的气流(Fofanova等,2019)。该图是使用生物者创建的。(b)不对称共培养室的物理图片。(c)在将FITC-DEXTRAN添加到包含Tigk单层的Transwells的顶端室后,在24小时内比较了基底外侧室内FITC-脱骨的荧光强度。在常规氧培养条件下未分化(阴性对照)和分化的Tigks(称为\ XE2 \ X80 \ X9CNORMOXIC \ XE2 \ X80 \ X9D)与在不对称培养条件下的分化Tigk(称为AS AS AS) \ xe2 \ x80 \ x9casymmetric \ xe2 \ x80 \ x9d)。对于每种条件,减去空白培养基的背景荧光强度。未分化的TIGK单层在正常氧状态下培养,然后切换为包含Ca 2+的分化培养基,用作负面对照。(N.S.:p> 0.05,***:p <0.001,n = 2技术重复,n = 3个生物重复序列)。(e)在常氧和不对称培养条件下培养的TIGK单层中细胞活力的比较。热处理细胞是阴性对照(N.S.:p> 0.05,**:p <0.01,n = 3,n = 3)。(d)Transwell插入物中的Tigk单层的形态在正常氧化条件下维持在细胞培养培养基中,或在不对称的共培养室中培养24小时。已知胶原蛋白由于胶原纤维的存在而影响明亮的田间成像,与未涂层的表面相比,该胶原纤维可能会掩盖所观察到的细胞或结构的细节(Hashimoto等,2020)。
我们介绍了使用各种实现技术和语言构建的裸机服务器的验证,该技术根据机器代码,网络数据包和椭圆形曲线密码学的数学规范来针对全系统输入输出规范。我们在整个堆栈中使用了非常不同的形式性技术,范围从计算机代数,符号执行和验证条件生成到对功能程序的交互式验证,包括用于C类和功能性语言的编译器。所有这些组件规格和特定于领域的推理技术都是针对COQ证明助手中常见的基础定义和合理的。连接这些组件是一种基于功能程序和简单对象的断言,无所不知的程序执行和基本分离逻辑,用于内存布局。此设计使我们能够将组件以最高级别的正确性定理汇总在一起,而无需理解或信任内部接口和工具而可以进行审核。我们的案例研究是一款简单的加密服务器,用于通过公开验证的网络消息翻转一些状态,其证明显示了总功能正确性,包括内存使用方面的静态界限。本文还描述了我们使用的特定验证工具的经验,以及对我们经历的工具和任务组合之间经历的生产力差异的原因的详细分析。
b'show电子特性,从半导体到超导。[4]分层TMDC的整体结构由堆叠的X \ Xe2 \ X80 \ X93M \ X93M \ Xe2 \ X80 \ X93X三明治组成,这些三明治通过van der waals相互作用将其固定在一起。[5,6]由于与内部的共价键相比,层间相互作用的弱点,因此单个X \ Xe2 \ X80 \ X93M \ X93M \ Xe2 \ X80 \ X80 \ X93X平板(也称为单层或单层)可以在相关的方式中隔离。主多型型为1T,2H和3R,其中字母数字代码指示X \ Xe2 \ X80 \ X93M \ X93M \ Xe2 \ X80 \ X80 \ X93X三明治每单位单元单元格以及结构对称性(H = H = Hexagonal,T = Totragonal,R = Totragonal,R = Rhombohed)。[5] MOS 2是层状TMDC低毒性的典型示例。[7] 2H(或单层特定情况下的1H)和1T是MOS 2的最探索类型。2H MOS 2具有三角骨结构,在热力学上是稳定的,可以在自然界中作为钼矿物矿物质。[8]当散装2H MOS 2缩小到1H单层时,它会从'
近几年来,电池需求量最大,在移动电子设备、电网和电动汽车中的大规模应用是环保的最新优势 [1- 5]。离子电池需求量最大。与其他具有较长充放电周期和较高能量密度的电池相比,锂离子 (LIB) 是最先进、最稳定的电池技术 [6–9]。钠离子电池 (NIB) 的需求量也很大,因为它们的化学性质相似、存储容量高,而且是地球上最丰富的材料,这使得钠可以与锂竞争。大量实验表明,2D材料表现出高容量[10-14],低开路电压,良好的循环稳定性,其中实验合成的MAX相2D MXenes M n+1 AX n(n=1,2,3..)在电池负极材料中显示出更好的效果,其中M为过渡金属族(Ti,V,Zr,Hf等),A为13-14族元素(Si,Al,Ge,Ga等),X为碳化物或氮化物族[15-21]。其中Ti 3 C 2 报道的容量为410 mAhg -1 Li原子/1C[22]。同时,密度泛函理论(DFT)预测其容量为320 mAh.g -1 。在用卤素基团(F、OH 等)封端后形成 Ti 3 C 2 Li 2 ,锂容量会大幅降低 [23]。最近,通过 Hf 3 [Al(Si)] 4 C 6 固溶体和氢氟酸选择性蚀刻合成了 MXenes Hf 3 C 2
例如,我们可以将二维磁体的磁性印记到其他层上,而不改变它们的固有性质,从而创造出新型的自旋电子和磁子装置。[8–10] 这种设计概念可以用于将磁性与超导相结合的系统,以实现拓扑超导。[11,12] 由于它在构建用于拓扑量子计算的基于马约拉纳的量子比特模块中具有潜在作用,因此目前它正受到广泛关注。[12–14] 虽然很少有潜在的真实材料表现出拓扑超导性,[15–18] 但设计材料中所需的物理特性来自不同成分之间精心设计的相互作用。 对于拓扑超导,需要将 s 波超导与磁性和自旋轨道耦合相结合,以创造出人工拓扑超导体。 [12,19] 然而,组分之间的耦合对界面结构和电子特性高度敏感 [2,20],因此,具有原子级清晰和高度均匀界面的范德华材料是一个具有吸引力的平台,可用于实现和利用设计材料中出现的奇异电子相。最近有研究表明,层状材料在单层 (ML) 极限下仍能保持磁性。[4,5,21] 虽然第一份报告依赖机械剥离进行样品制备,但相关材料三溴化铬 (CrBr 3 ) 和 Fe 3 GeTe 2 也在超高真空 (UHV) 下使用分子束外延 (MBE) 生长,[22,23] 这对于实现干净的边缘和界面至关重要。由于这些材料的层状性质,它们本身缺乏表面键合位点,从而阻止了层之间的化学键合,并导致对界面的更好控制。最近,我们利用MBE成功制备了基于vdW异质结构的超导铁磁混合体系。[24,25] 更重要的是,通过结合自旋轨道耦合、二维铁磁CrBr 3 和超导铌二硒化物(NbSe 2 ),我们利用低温扫描隧道显微镜(STM)和扫描隧道光谱(STS)证明了一维马约拉纳边缘模式的存在。[25] 然而,对于未来的应用,还需要进一步系统的研究,以更好地理解在NbSe 2 基底上生长的单层CrBr 3 的电子和磁性。