在固体物理学和凝聚态物理学中,态密度 (DOS) 量化了所考虑材料中易被占据并具有确定能量的电子态的数量。只要知道色散关系,就可以计算出这个量。可以为各种各样的系统计算 DOS。某些量子系统由于其晶体结构而具有对称性,这简化了 DOS 的计算。总 DOS 是一个允许确定材料电子传导特性的参数。对于晶体中的每个原子,我们确定一个半径为的球体,在该球体内部,我们将电子密度投影到球谐函数(类型:s、p、d 或 f)上。部分 DOS 用于识别晶体中化学键的结构。使用 DFT(密度泛函理论)对单斜 ZrO 2 (m-ZrO 2 ) 的电荷密度和 DOS 进行了第一性原理研究,其中 m-GGA (TPSS) 函数用于交换关联势、伪势 (PP) 近似和 STO (斯莱特类型轨道) 作为集成在 ADF-BAND 代码中的基本函数。氧化锆 (ZrO 2 ) 是一种高 k 电介质 (k 25 和 E g 6 eV)。ZrO 2 是一种很有前途的高 k 电介质候选材料,可取代 SiO 2 作为 CMOS 中的栅极氧化物,因为它兼具出色的机械、热、化学和介电性能。
采用随机策略结合群论、图论和高通量计算,系统地扫描了共87种新的单斜硅同素异形体。新的同素异形体中,13种具有直接或准直接带隙,12种具有金属特性,其余为间接带隙半导体。这些新型单斜硅同素异形体中有30多种表现出大于或等于80 GPa的体积模量,其中3种表现出比金刚石硅更大的体积模量。只有两种新的硅同素异形体表现出比金刚石硅更大的剪切模量。详细研究了所有87种Si单斜同素异形体的晶体结构、稳定性(弹性常数、声子谱)、力学性能、电子性能、有效载流子质量和光学性能。五种新的同素异形体的电子有效质量ml小于金刚石硅的电子有效质量。所有这些新型单斜硅同素异形体在可见光谱区都表现出强吸收。结合它们的电子带隙结构,这使它们成为光伏应用的有前途的材料。这些研究极大地丰富了目前对硅同素异形体的结构和电子特性的认识。
电荷密度波(CDW)是电子密度和原子位置的调制,其周期性不同于(通常与)基础的晶格[1]。CDW出现在各种材料中,它们可以内在地引起金属 - 绝缘体过渡[2]。CDW被认为是由嵌套,电子偶联,激子机制或其组合驱动的[1,3]。在这里,我们表明CDW也可以与CDW周期性以外的波矢量的基础晶格的变形有关。CDW与其他顺序参数的耦合(在元素硫的本情况下的晶格失真)不仅是CDW机制的一部分很重要,而且还改变了相变的特征。CDW以八个元素形成,其中七个处于高压[4-21]。CDW相的压力诱导的ONES集始终是第一阶转变,而高压转变归因于第一阶或二阶转变,通常涉及结构或光谱数据的外推[8,10,10,10,12 - 14,14,16,20,20,22,22]。如果CDW相是纯粹位移性的结构相变
自供电可穿戴电子设备需要热电材料同时具有高的无量纲性能系数(zT)和良好的灵活性,以便将人体排出的热量转化为电能。Ag2(S,Se)基半导体材料可以很好地满足这些要求,因此,它们最近在热电界引起了极大的关注。Ag2(S,Se)结晶为正交结构或单斜结构,具体取决于具体的S/Se原子比,但其晶体结构与机械/热电性能之间的关系迄今为止仍不清楚。在本研究中,制备了一系列Ag2Se1‐xSx(x=0、0.1、0.2、0.3、0.4 和 0.45)样品,并系统地研究了它们的机械和热电性能对晶体结构的依赖性。 Ag 2 Se 1-x S x 体系中 x = 0 : 3 被发现是正交结构和单斜结构之间的过渡边界。力学性能测量表明,正交 Ag 2 Se 1-x S x 样品易碎,而单斜 Ag 2 Se 1-x S x 样品延展性好且柔韧。此外,在相当的载流子浓度下,正交 Ag 2 Se 1-x S x 样品比单斜样品表现出更好的电传输性能和更高的 zT,这很可能是由于它们的电子-声子相互作用较弱。这项研究为柔性无机 TE 材料的进一步发展提供了启示。
自供电可穿戴电子设备需要热电材料同时具有高的无量纲性能系数(zT)和良好的灵活性,以便将人体排出的热量转化为电能。Ag2(S,Se)基半导体材料可以很好地满足这些要求,因此,它们最近在热电界引起了极大的关注。Ag2(S,Se)结晶为正交结构或单斜结构,具体取决于具体的S/Se原子比,但其晶体结构与机械/热电性能之间的关系迄今为止仍不清楚。在本研究中,制备了一系列Ag2Se1‐xSx(x=0、0.1、0.2、0.3、0.4 和 0.45)样品,并系统地研究了它们的机械和热电性能对晶体结构的依赖性。 Ag 2 Se 1-x S x 体系中 x = 0 : 3 被发现是正交结构和单斜结构之间的过渡边界。力学性能测量表明,正交 Ag 2 Se 1-x S x 样品易碎,而单斜 Ag 2 Se 1-x S x 样品延展性好且柔韧。此外,在相当的载流子浓度下,正交 Ag 2 Se 1-x S x 样品比单斜样品表现出更好的电传输性能和更高的 zT,这很可能是由于它们的电子-声子相互作用较弱。这项研究为柔性无机 TE 材料的进一步发展提供了启示。
在750℃下烧成6小时以上,成为单斜晶WO 3 相。 P-2、P-3在烧成前为单斜晶系WO 3 、三斜晶系WO 3 、单斜晶系W 0.71 Mo 0.29 O 3 (PDF 01-076-1297),但在750℃下烧成6小时以上,变为单斜晶系W 0.71 钼 0.29 O 3 (PDF 01-076-1297) 和矩形 W 0.4 Mo 0.6 O 3 (PDF 01-076-1280)。 P-4在750℃下烧制24小时之前,单斜晶系W 0.71 Mo 0.29 O 3 (PDF 01-076-1297)、矩形W 0.4 Mo 0.6 O 3 和单斜晶系MoO 3 混合,但经过100小时后。煅烧后,MoO 3 峰消失,单斜晶系W 0.71 Mo形成了0.29 O 3 和矩形晶体W 0.4 Mo 0.6 O 3 。 P-5在烧成前为单斜MoO 3 (PDF PDF 00-047-1081),但烧成6小时以上后,变为具有层状结构的矩形MoO 3 (PDF 03-065-2421)。
薄层平面内各向异性材料可以支持超受限极化子,其波长取决于传播方向。此类极化子在探索基本材料特性和开发新型纳米光子器件方面具有潜力。然而,超受限平面内各向异性等离子体极化子 (PP) 的实空间观测一直难以实现,因为它们存在于比声子极化子更宽的光谱范围内。在这里,我们应用太赫兹纳米显微技术对单斜 Ag 2 Te 薄片中的平面内各向异性低能 PP 进行成像。通过将薄片置于 Au 层上方,将 PP 与其镜像混合,增加了方向相关的相对极化子传播长度和定向极化子限制。这允许验证动量空间中的线性色散和椭圆等频轮廓,从而揭示平面内各向异性声学太赫兹 PP。我们的工作展示了低对称性(单斜)晶体上的高对称性(椭圆)极化子,并展示了使用太赫兹 PP 对各向异性载流子质量和阻尼进行局部测量。
二氧化钒 (VO 2 ) 作为相变材料,可控制金属和绝缘体状态之间相变过程中传递的热量。在温度高于 68 ̊C 时,金红石结构的 VO 2 可阻挡热量并增加红外辐射反射率,而在较低温度下,单斜结构 VO 2 可充当透明材料并增加透射辐射。在本文中,我们首先介绍 VO 2 在高温和低温下的金属-绝缘体相变 (MIT)。然后,我们通过 Ansys HFSS 模拟超材料反射器的超表面 VO 2 ,以显示 VO 2 的金红石和单斜相的发射率可调性 (Δε)。在下一节中,我们将回顾在玻璃和硅基板上通过改变溅射气体压力和基板温度沉积热致变色 VO 2 的最新进展。最后,我们介绍了在高于 300̊C 的温度下,用 V 2 O 5 靶在不同氧气和氩气组合的环境中在厚 SiO 2 基底上原位溅射 VO x 薄膜的结果,然后用 x 射线衍射 (XRD) 方法对其进行了分析。基于热致变色 VO 2 的超材料结构在过去几年中为被动节能光学太阳能反射器开辟了一条新途径。
摘要:具有层状晶体结构和高平面各向异性的材料(例如黑磷)具有独特的性能,因此有望应用于电子和光子器件。最近,GeS 2 和 GeSe 2 的层状结构因其高平面光学各向异性和宽带隙而被用于短波长区域的高性能偏振敏感光电检测。高度复杂、低对称(单斜)晶体结构是高平面光学各向异性的起源,但相应纳米结构的结构性质仍有待充分了解。在这里,我们展示了单斜 GeS 2 纳米结构的原子级表征,并通过 Cs 校正扫描透射电子显微镜量化了实空间中亚埃级的平面结构各向异性。我们通过密度泛函理论 (DFT) 计算和基于轨道的键合分析,阐明了这种高平面内各向异性的起源,即 GeS 2 单层中 [GeS 4 ] 四面体的有序和无序排列。我们还展示了单层 GeS 2 中的高平面内机械、电子和光学各向异性,并设想了单轴应变下的相变,可能用于非易失性存储器应用。关键词:二硫化锗、复合二维材料、亚埃成像、键合机制、平面内各向异性 T
非常规的铁电性型植物结构氧化物由于其出色的可伸缩性和硅兼容性而在纳米电子学上带来了巨大的机会。然而,由于可视化纳米晶体中的氧离子的挑战,它们的极化顺序和开关过程仍然难以捉摸。在这项工作中,极化开关和相关的极性 - 尖端相变中的氧转移在独立式ZRO 2薄膜中直接捕获在多个可稳态的相之间,而低剂量综合差异差异差相对比扫描传输电子(IDPC-STEM)。在抗fiferroeleelectric和铁电顺序与界面极化弛豫之间的双向转变在单位细胞尺度上进行了澄清。 同时,极化切换与单斜骨和正骨相之间的可逆Martensenitic转化以及两步的四面体到四面体到正常相变的ZR – O位移密切相关。 这些发现提供了对亚稳态多晶型物之间的过渡途径的原子见解,并揭示了(抗)铁电氟氧化物中极化顺序的演变。在抗fiferroeleelectric和铁电顺序与界面极化弛豫之间的双向转变在单位细胞尺度上进行了澄清。同时,极化切换与单斜骨和正骨相之间的可逆Martensenitic转化以及两步的四面体到四面体到正常相变的ZR – O位移密切相关。这些发现提供了对亚稳态多晶型物之间的过渡途径的原子见解,并揭示了(抗)铁电氟氧化物中极化顺序的演变。