作为跨主题,结构化搜索高质量系统概述的来源,以下机构基于其基于证据的方法,其高报告质量,其科学独立性,对研究档案的进一步见解以及必要时的进一步见解,他们对德语或选择的欧洲供应环境:
摘要 本文提出了一种适用于W波段的小型化宽带单极子片上天线(AOC)。该AOC基于130nm CMOS工艺,通过顶层M6采用六边形网格、底层M1采用电容性AMC(人工磁导体)实现小型化。首先,利用电磁仿真分析了不同模式的反射相位。其次,通过采用六边形网格将带AMC的AOC轴向尺寸进一步减小16.2%(与带AMC的直单极子天线相比),并通过分析网格角度优化了阻抗。提出的小型化单极子天线在81GHz处的尺寸为367um×194.2um(0.1λ 0 ×0.052λ 0 )。测量表明,该天线的阻抗带宽为31.5%(75-103GHz),在85GHz处峰值增益为-0.35dBi。所提出的天线具有已报道的最小尺寸,可应用于W波段FMCW雷达片上系统关键词:AMC,小型化单极天线,宽带天线,AOC分类:微波和毫米波器件,电路和模块
摘要:当前射频标识(RFID)标准之间的不相容性导致需要通用和无线保真度(Wi-Fi)兼容物联网应用程序(IoT)应用程序的RFID。这样的通用RFID需要单极双掷开关(SPDT)开关和低噪声放大器(LNA)才能通过天线指导和扩增接收到的原始信号。SPDT患有低隔离,高插入损失和低功率处理能力,而LNA遭受较小的增益,笨重的模具面积,质量较小(Q)因子,有限的调整灵活性等。由于当前一代设备中的被动电感器使用情况。在这项研究中,提出了基于互补的金属氧化物半导体(CMOS)的无电感SPDT和LNA设计。SPDT采用了一系列拓扑以及平行的共振电路和电阻体漂浮,以实现改进的插入损失和隔离性能,而LNA设计则以Gyrator概念实现,其中频率选择性储罐电路与伴随的活跃电感器形成了伴随的频率,并由伴随的激活电感器形成。使用90 nm CMOS的cmos cmos过程的表明,我们的SPDT设计完成了0.83 dB的插入损失,45.3 dB的隔离和11.3 dBM的动力处理能力,而LNA则达到33 dB的频率为33 db,bandf of 30 mhz和30 mhzz和db nf的频率。 SPDT和LNA的布局非常紧凑,分别为0.003 mm 2和127.7μm2。 这样的SPDT和LNA设计将增强与Wi-Fi兼容的IoT RFID技术的广泛改编。表明,我们的SPDT设计完成了0.83 dB的插入损失,45.3 dB的隔离和11.3 dBM的动力处理能力,而LNA则达到33 dB的频率为33 db,bandf of 30 mhz和30 mhzz和db nf的频率。SPDT和LNA的布局非常紧凑,分别为0.003 mm 2和127.7μm2。这样的SPDT和LNA设计将增强与Wi-Fi兼容的IoT RFID技术的广泛改编。
摘要 — 本文设计、印刷并分析了一种喷墨印刷开槽圆盘单极天线,该天线在聚对苯二甲酸乙二酯 (PET) 基板上处于 2.45 GHz ISM 频段,可用于早期检测脑中风。PET 因其低损耗角正切、柔韧性和防潮特性而被用作基板。通过实施开槽方法,该天线的尺寸减小到 40 × 38 mm2。印刷天线的带宽为 480 MHz(19.55%),频率范围为 2.25 GHz 至 2.73 GHz。它显示出 99% 的辐射效率,在 2.45 GHz 频率下实现的增益为 2.78 dB。单基地雷达 (MR) 方法被视为通过分析有无中风的头部模型接收信号的变化来检测脑中风。计算了 2.45 GHz 频率下的最大特定吸收率 (SAR) 分布。紧凑的尺寸和灵活的特性使得该单极天线适合于脑中风的早期检测。