随着深度学习的出现,可变形图像配准经历了一场变革。虽然卷积神经网络 (CNN) 可以加速配准,但与迭代成对优化方法相比,它们的准确度较低,并且需要大量的训练队列。基于使用神经网络表示信号的进步,隐式神经表示 (INR) 已在配准社区中出现,用于连续建模密集位移场。使用成对配准设置,INR 可以减轻从一组患者身上学到的偏差,同时利用先进的方法和基于梯度的优化。然而,坐标采样方案使得密集变换参数化与 INR 容易产生生理上不合理的配置,从而导致空间折叠。在本文中,我们介绍了 SINR——一种使用自由形式变形 (FFD) 参数化 INR 表示的连续可变形变换的方法。SINR 允许多模态可变形配准,同时缓解当前基于 INR 的配准方法中发现的折叠问题。 SINR 在 CamCAN 数据集上的 3D 单模和多模脑配准方面均优于现有的最先进方法,证明了其在成对单模和多模图像配准方面的能力。关键词:隐式神经表征、图像配准、多模
激光:激光原理 – 自发辐射和受激发射 – 爱因斯坦系数 – 粒子数反转和激光作用 – 光学谐振器(定性)- 激光类型 – Nd:YAG、CO 2 激光、GaAs 激光 – 激光的工业和医疗应用;光纤:光纤中光的原理和传播 – 数值孔径和接受角 – 基于材料的光纤类型、折射率分布、传播模式(单模和多模光纤)- 光纤衰减的定性思想 - 光纤的应用 - 光纤通信(示意图)、有源和无源光纤传感器、内窥镜
激光:激光原理 – 自发辐射和受激发射 – 爱因斯坦系数 – 粒子数反转和激光作用 – 光学谐振器(定性)- 激光类型 – Nd:YAG、CO 2 激光、GaAs 激光 – 激光的工业和医疗应用;光纤:光纤中光的原理和传播 – 数值孔径和接受角 – 基于材料的光纤类型、折射率分布、传播模式(单模和多模光纤)- 光纤衰减的定性思想 - 光纤的应用 - 光纤通信(示意图)、有源和无源光纤传感器、内窥镜
集成航空电子设备套件,包括: - 左侧和右侧主飞行显示器 (PFD) 和 PFD 控制器 - 带控制器和键盘的上部和下部中央多功能显示器 (MFD) - 飞行指挥仪面板 - 飞行管理系统 (FMS) - 空中数据姿态航向参考系统 (ADAHRS) - 双音频面板 - 单 GPS - 单模 S 应答器 - 双磁力计 - 双多模数字无线电 - 单测距设备 (DME) - 单雷达高度计 (RA)
第 2 章。光纤。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。15 2.1 光的本质。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。15 2.1.1 作为电磁波的光。。。。。。。。。。。。。。。。。。。。16 2.1.2 极化。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。19 2.1.3 干扰。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。20 2.2 在光纤上传输光。。。。。。。。。。。。。。。。。。。。。。。。。.25 2.2.1 玻璃特性 .......................29 2.2.2 传输容量 .........................33 2.2.3 操作原理 ...........................33 2.2.4 光纤折射率分布 ........................36 2.3 光在多模光纤中的传播 .........。。。。。。。。。。。。39 2.3.1 斯涅尔定律。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。40 2.3.2 临界角 ............。。。。。。。。。。。。。。。。。。。。41 2.3.3 数值孔径 (NA)。。。。。。。。。。。。。。。。。。。。。。。。。。42 2.3.4 传播模式。。。。。。。。。。。。。。。。。。。。。。。。。。。。。44 2.3.5 模式耦合。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。50 2.3.6 模态噪声。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。51 2.3.7 命名模式。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。55 2.4 单模传播。。。。。。。。。。。。。。。。。。。。。。。。。。。。56 2.4.1 单模特性 ...... div>............。 。 。 。 。 。 。 . 57 2.4.2 单模光纤中的色散 . . . . . . . . . . div> . . . . . . . . . . . 。 59 2.4.3 模式划分噪声。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 . . . . . . div> 67 2.4.4 反射和回波损耗变化 . . . . . .。。。。。。。.57 2.4.2 单模光纤中的色散 .......... div>...........。59 2.4.3 模式划分噪声。。。。。。。。。。。。。。。。。。。。。。...... div>67 2.4.4 反射和回波损耗变化 ............< div> 。。。。。。..67 2.4.5 非线性高功率效应 ..。。。。。。。。 < /div>.............69 2.5 塑料光纤 (POF) ... div>............。 。 。 。 。 。 。 。 。 。 。 。 。 74 2.5.1 POF 研究。 。 。 。 。 。。。。。。。。。。。。。。74 2.5.1 POF 研究。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.76 2.6 硬质聚合物(塑料)包层(二氧化硅)光纤 (HPCF) .........< div> 。。。。。。76
激光:激光原理 – 自发辐射和受激发射 – 爱因斯坦系数 – 粒子数反转和激光作用 – 光学谐振器(定性)- 激光类型 – Nd:YAG、CO 2 激光、GaAs 激光 – 激光的工业和医疗应用;光纤:光纤中光的原理和传播 – 数值孔径和接受角 – 基于材料的光纤类型、折射率分布、传播模式(单模和多模光纤)- 光纤衰减的定性思想 - 光纤的应用 - 光纤通信(示意图)、有源和无源光纤传感器、内窥镜
激光:激光原理 – 自发辐射和受激发射 – 爱因斯坦系数 – 粒子数反转和激光作用 – 光学谐振器(定性) – 激光类型 – Nd:YAG、CO 2 激光、GaAs 激光 – 激光的工业和医疗应用;光纤:光纤中光的原理和传播 – 数值孔径和接受角 – 基于材料的光纤类型、折射率分布、传播模式(单模和多模光纤) – 光纤衰减的定性概念 – 光纤的应用 – 光纤通信(示意图)、有源和无源光纤传感器、内窥镜
激光:激光原理 – 自发辐射和受激发射 – 爱因斯坦系数 – 粒子数反转和激光作用 – 光学谐振器(定性)- 激光类型 – Nd:YAG、CO 2 激光、GaAs 激光 – 激光的工业和医疗应用;光纤:光纤中光的原理和传播 – 数值孔径和接受角 – 基于材料的光纤类型、折射率分布、传播模式(单模和多模光纤)- 光纤衰减的定性思想 - 光纤的应用 - 光纤通信(示意图)、有源和无源光纤传感器、内窥镜
CrystalView 光纤概述 CrystalView 光纤概述 CrystalView 光纤概述 CrystalView 光纤概述 CrystalView 光纤概述 CrystalView 光纤模型以发射器和接收器单元成对出售。 发射器连接到您的计算机,接收器连接到您的键盘、显示器和鼠标。 双单元在发射器单元上有一个额外的连接,用于连接另一个键盘、显示器和鼠标。 您还可以获得一个机箱,它可以容纳最多 10 个发射器或接收器,并使用公共电源进行高密度机架安装。 发射器和接收器通过带有 SC 型连接的标准双光纤电缆连接在一起。 距离和光纤电缆类型 距离和光纤电缆类型 距离和光纤电缆类型 CrystalView 光纤模型以多模或单模形式提供。 光纤电缆由芯线尺寸/包层尺寸指定。多模电缆可以是 50/125 微米(最长 1200 英尺)或 62.5/125 微米(最长 600 英尺)。单模电缆为 9/125 微米(最长 33,000 英尺)。可以从 Rose 订购任意长度的电缆。CrystalView 光纤平台 CrystalView 光纤平台 CrystalView 光纤平台 CrystalView 光纤平台 CrystalView 光纤可用于支持 PC 或 Sun 计算机。PC 型号有单机版或双机版,发射器单元上有第二个 KVM 站。Sun 型号仅提供单机版。CrystalView 光纤底盘 CrystalView 光纤
摘要 - 输入法是各个领域中使用最广泛的研究技术之一。通过在光纤上实施干涉仪,光纤干涉仪(FOIS)在过去的四十年中已经获得了巨大的生长和进步,并已探索以测量各种物理,化学,化学和生物学参数。FOI通常是使用单模纤维(SMF)构建的,并使用具有紧密控制的极化状态(SOP)在光学结构域中询问,以确保促进感应应用的高质量干扰信号。单模操作以及SOP的严格要求阻碍了敌人的进一步发展,例如,基于多模纤维(MMF)基于基于的FOI。在本文中,我们介绍了基于光纤的微波光子干涉仪的全面研究,该研究基于最近开发的技术,基于光载体的微波干涉仪(OCMI)。由OCMI审问(即微波炉干涉仪)启用了所提出的感应配置,从本质上讲,通过在微波域中读取FOIS来克服传统FOI的两个限制方面。微波炉干涉仪对光载体SOP的变化免疫,并且对光纤类型(SMFS和MMF)的依赖性较低。我们提出了微波仪干涉系统的完整数学模型。使用SMF和多模聚合物光纤的应变测量验证了所提出的系统的传感能力。然后,使用三种不同类型的干涉仪进行验证,包括Mach-Zehnder干涉仪,Fabry-Perot干涉仪和基于SMFS和MMFS的Michelson干涉仪。微波仪的干涉构构可以在各种传感应用中进一步扩展FOIS的路径。