8天前 — 2.5. 特殊规范 a) 电气设备施工 1) 使用规定以外的材料时,必须符合相关法律法规规定的同等质量或更高标准,并必须事先由监理方通知。
自 BwBBG 生效以来,截至 2024 年 4 月 30 日截止日期,BAAINBw 及其业务领域共根据国防和安全领域采购条例 (VSVgV) 开展了 1,071 项采购程序。其中 229 起案件适用了 BwBBG。绝大多数案件(218 起)涉及根据 BwBBG 第 3(1)至(3)条简化整体裁决的裁定。在 10 起案件中,根据 BwBBG 第 3 节第 6 款和 BwBBG 第 7 节第 1 款的澄清,适用了国际组织采购和军事情报目的采购的采购法例外情况。在复审程序中,根据《BwBBG》第5条第3款的规定,复审申请被撤回。
我们探索南美洲南方共同市场次区域在一系列技术经济、基础设施和政策力量下的可持续电力系统发展路径。南方共同市场次区域包括阿根廷、巴西、智利、乌拉圭和巴拉圭,它们代表了南美洲大陆的主要电力生产、消费和贸易动态。我们使用电力系统规划模型来共同优化到 2050 年的发电、存储和输电设施的投资和运营。我们的结果表明,在一切照旧的情况下,到 2050 年,风能和太阳能将占新增发电容量的一半以上,尽管这需要大幅扩大天然气发电容量。虽然新水电似乎成本竞争力较低,但现有的高水电容量为整合风能和太阳能提供了至关重要的灵活性,并避免进一步依赖更昂贵或污染更严重的资源(例如天然气)。到 2050 年,实现 90% 以上的减排目标,主要通过加强风能、太阳能和电池存储的整合(主要是在 2040 年之后)来实现,但成本增加 11%-28%,而加强水电扩张可降低低碳转型的成本,这表明在选择清洁能源时,可以在节约成本和保护环境之间进行权衡。实现高减排目标还需要加强次区域电力贸易,这主要可以通过现有的互连能力来实现。
图 1. 使用可注射储库技术缓慢递送显示 SARS-CoV-2 受体结合结构域 (RBD-NP) 的纳米颗粒抗原和分子佐剂,可实现强效、广泛和持久的 COVID 免疫。可注射聚合物纳米颗粒 (PNP) 水凝胶疫苗示意图,其中十二烷基改性羟丙基甲基纤维素 (HPMC-C 12 ) 与聚乙二醇-b-聚乳酸纳米颗粒 (PEG-b-PLA NPs) 和疫苗货物 (RBD-NP 和临床相关的分子佐剂) 相结合。聚合物和 NP 之间的动态、多价非共价相互作用导致物理交联的水凝胶,其独特的分层结构使得疫苗成分能够在用户定义的时间范围内共同递送。可以调整聚合物与纳米颗粒的比例来调节水凝胶的机械性能,以适应不同的疫苗货物释放动力学。
自从发现 [1,2] 以来,EEG 已越来越多地应用于基础研究、临床研究和工业研究。针对每个领域,都陆续开发出了特定的工具。这些工具包括:(i) 利用微电极进行脑内记录 [3,4],该方法可以识别 EEG 信号的神经元来源,并更好地理解 EEG 活动的生理机制;(ii) 大平均法,包括由重复事件 (视觉、听觉、体感……) 触发的一系列试验的平均值 [5],该方法开启了诱发相关电位 (ERP) 领域的研究,最近包括 EEG 源发生器 [8–10] 在内的 EEG 动力学工具 [6,7] 丰富了这一研究领域; (iii) 将 EEG 用于神经反馈和脑机接口 (BCI) [ 11 , 12 ]。过去,这些领域及其相关工具是分开发展的,但计算资源和实验数据的日益普及推动了横向方法和方法论桥梁的发展。视觉诱发电位 (VEP) 是一种特殊的 ERP,从枕叶皮质记录的 EEG 信号中提取,可由不同类型的视觉刺激触发,从简单(如棋盘格)[ 13 ,第 14 页,15 ] 到更复杂的视觉刺激(如人脸、3D 或运动图像)[ 14 , 16 – 20 ]。VEP 是通过计算大量正在进行的 EEG 信号试验的总平均值获得的(见公式 1),从而产生精心设计且易于识别的电位,随后可用于更好地理解视觉输入的连续处理阶段。然而,这些诱发反应来自至少两种不同的机制,分别源自加法模型或振荡模型 [8, 21 – 24]。对于加法模型,诱发反应来自对感觉输入的自下而上的连续处理。这会产生特定序列的单相诱发成分峰,这些峰最初嵌入自发 EEG 背景中。后者 EEG 活动被视为噪声,并通过随后的平均排除。对于振荡模型,诱发电位可能是由于特定频带内正在进行的 EEG 节律的相位锁定所致。这种 EEG 相位重组可以通过试验间一致性 (ITC) 来测量,作为对外部刺激的反应。从根本上讲,只有当相关 EEG 功率没有同时变化(增加或减少)时,这种测量才有意义。在这种情况下,我们处于纯相位锁定状态,诱发反应仅归因于正在进行的 EEG 振荡的重组。例如,体感诱发电位的 N30 分量就是这种情况,其中 70% 的幅度归因于纯相位锁定 [ 25 ]。事实上,在大多数 ERP 研究中,会出现混合情况(功率变化和相位锁定),这使得基础和临床解释变得困难。另一个缺点是,在大多数诱发电位研究中,对一组受试者进行的是总体平均值。虽然总体平均值方法可以得到适当的统计数据[26]和关于基本或临床结果的实际结论,但它掩盖了从临床角度来看可能至关重要的个体特性。当诊断工具基于总体平均值诱发电位[27]时,这个问题尤其重要。同样,对总体平均值数据应用逆建模[10,28]可以非常有效地识别ERP发生器[19,29-31],但不利于确定个体特征。面对这些缺点,
。CC-BY 4.0 国际许可证永久有效。它以预印本形式提供(未经同行评审认证),作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。版权持有者于 2024 年 9 月 9 日发布了此版本。;https://doi.org/10.1101/2023.09.27.559806 doi:bioRxiv 预印本
Hanna Abbas(DSM -Firmenich),Chiara Achilli(帕尔马大学),YvonneAgersø(Chr,Hansen A/S),Aikaterini Alexopoulou(Fefana Asbl Ing),列瓦什尼·比尤(Levashni Bijou),卡罗琳·布德格(ANSES),鲁德·布雷默斯(Ruud Bremmmers)(Regal BV),本杰明·贝克尔(Benjamin Buckle)(Salus Animal Health Ltd),Giuseppe Luca Capodieci(fefana) Costerousse -Cogreen Consulting),Fabiola Cuevas(Corteva Agriscience BV),ChloéDamour(Metex Noovistago),Teresa Debesa(Nutreco),朱利安Debiais(All4feed)、Ruud Detert(Food Basics)、Sabina Díaz(Novus Spain SA)、Juliane Dohms(Phytobiotics Futterzusatzstoffe GmbH)、Daisy Rocio Duchen Bocangel(Pen & Tec Consulting)、Esraa Elewa(Nutreco)、Tanja Erbs(Novozymes)、Mari Eskola(Medfiles Ltd)、Melani Garcia(Volac Feeds Ltd.)、Katrin Grothaus(Biochem Zusatzstoffe Handels- und Produktionsges. mbH)、Nicholas Guthier (Evonik Operations GmbH)、Marie-Julie Hannoun (Metex Noovistago)、Yujie He (Nutreco)、Michaela Herzog (Feed and Additives GmbH)、Clémentine Hincelin (ADISSEO)、Vera Houriet (ADM)、Ruud Huibers (Elanco Deutschland GmbH)、Philip Jones (Volac International Ltd)、Alicia Juárez Pallarés (FEFANA)、Niovi Kordali (Nutreco Nederland BV)、Serol Korkmaz (伊斯坦布尔兽医控制研究所)、Paulina Kosakowska (Józef Gręda "JFARM")、Daria Królikowska (Proteon Pharmaceuticals SA)、Sonja Krone-Wolf (Feed and Additives GmbH)、Anni Laffitte (Royal Canin)、Anouk Lanckriet
2. Shri S.S. Ahluwalia 3. Shri Sukhbir Singh Badal 4. Shri Subhash Chandra Baheria 5. Dr.苏巴什·拉姆劳·巴姆雷 6. Smt. Sunita Duggal 7. Gaurav Gogoi 先生 8. Sudheer Gupta 先生 9. Manoj Kishorbhai Kotak 先生 10. Pinaki Misra 先生 11. Hemant Shriram Patil 先生 12. Ravi Shankar Prasad 先生 13. Nama Nageshwara Rao 先生 14. Prof. Sougata Ray 15. Shri PV Midhun Reddy 16. Shri Gopal Chinayya Shetty 17. Shri Parvesh Sahib Singh 18. Dr. (教授) Kirit Premjibhai Solanki 19. Manish Tewari 先生 20. Balashowry Vallabbhaneni 先生 21. Rajesh Verma 先生 州议会