6。跨学科的整合与协作:整合来自不同学科的见解,包括化学,生物学,材料科学和环境科学,对于应对胺研究中的复杂挑战至关重要。在不同领域具有专业知识的研究人员之间的合作努力可以促进为跨学科问题的整体解决方案的发展。但是,跨学科的有效合作和沟通仍然是一个挑战,需要努力弥合学科界限并促进解决这些问题的知识交流,需要跨学科的研究人员的合作努力,综合和表征的创新方法,以及对可持续性和社会影响的承诺。通过应对这些挑战,研究人员可以提高我们对胺的理解,并利用他们满足关键科学和社会需求的潜力。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本于2024年8月26日发布。 https://doi.org/10.1101/2024.08.24.609500 doi:Biorxiv Preprint
患者A,一名25岁的女性,被诊断出患有急性髓细胞性白血病(AML),法国裔美国人(FAB)分类AML-M1。她接受了胞嘧啶阿拉伯糖苷和iDarubicin(化学疗法)的治疗。花岗岩(静脉注射1毫克)作为预防性抗杀菌药物。由于四天后持续存在Granisetron-Rantractory恶心,因此每天静脉注射10 mg甲氧氯普胺10毫克。两天后,病人感觉到她的嘴和右手抽筋,将脖子向右扭曲,并将眼睛转向右侧及以上,她无法说话。短暂放松后,她的头和手再次转向强迫位置。在这一集中,她仍然完全意识。考虑了急性肌张力反应。静脉内服用5 mg Biperiden(Akineton)时,症状立即消失。停止甲氧氯普胺后,未发现进一步的肌张反应。
15 年来,美国一直没有生产 TATB。TATB 以前采用 Benziger 开发的合成方法生产(图 5)19), 20)。相对昂贵且国内无法获得的 1,3,5-三氯苯 (TCB) 经硝化得到 2,4,6-三氯-1,3,5-三硝基苯 (TCTNB),然后将其胺化得到 TATB。这两个反应都需要高温(150 o C)。该过程中遇到的主要杂质是氯化铵。在胺化步骤中加入 2.5% 的水会显著降低 TATB 中的氯化铵含量。还发现了低水平的氯化有机杂质。这些杂质包括 2,4,6-三氯-1,3,5-三硝基苯 (TCTNB)、1,3-二硝基-2,4,5,6-四氯苯、1,3-二硝基-2,4,6-三氯苯及其部分胺化产物 21)。值得注意的是,与其他高爆炸药 (RDX、HMX、TNT、HNS) 不同,TATB 不能使用常规技术纯化。TATB 的溶解度和挥发性极低,无法在大规模生产中使用重结晶和升华工艺。超过氯化铵和/或其他杂质允许限度的 TATB 生产批次必须丢弃。这显然在经济和环境方面都是不可取的。
本报告是由美国政府某个机构资助的工作报告。美国政府及其任何机构、巴特尔纪念研究所或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,或承担任何法律责任或义务,或保证其使用不会侵犯私有权利。本文中对任何特定商业产品、流程或服务的商品名、商标、制造商或其他方面的引用并不一定构成或暗示美国政府或其任何机构或巴特尔纪念研究所对其的认可、推荐或支持。本文中表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
氯需要最低浓度和接触时间才能使水中的微生物灭活。必须考虑多个因素,从源水质到保持储罐的大小,令人困惑和氯的需求,以确保足够的消毒水平。因此,这些系统必须经过专业设计和安装。,如果您从湖泊,河流或非安全井中获得饮用水,则除了氯处理外,还需要去除抗氯的寄生虫。
摘要:背景:链球菌属是口腔中的主要细菌,而Sanguinis链球菌是其中之一,它具有用于扩展牙齿生物膜的主要功能。牙龈和牙周疾病是由牙齿生物膜引起的,如今,有必要从草药中自然地呈现抗菌化合物,而副作用较少,可以替代常见处理的氯己胺。因此,这项研究的目的是评估胸腺油在体外对豆科链球菌细菌链球菌的抗菌活性。材料和方法:从10名受试者中采集人体上牙菌斑样品,然后将形态学和显微镜检查,生化测试,验光蛋白测试,溶血能力测试和常规聚合酶链反应试验应用于链球菌链球菌的疾病一致。细菌对胸腺的敏感性,抑制生长并杀死测试细菌的最低浓度被鉴定出与0.2%氯己定的部分相当,作为一种剂量对照,而10%二甲基亚硫化物作为阴性对照。结果:胸腺胸粉在sanguinis链球菌上具有明显的抗菌特性,并具有多个抑制区。与氯己氨酸相比,胸腺胸腺油具有更强的分裂特性。抑制生长并杀死豆科链球菌的最低浓度为(0.09%)。结论:与氯甲基丁胺相比,胸腺胸粉表现出较高的抗细菌作用,每种浓度在sanguinis上,每种浓度均具有较高的抗细菌作用。它可以用作Chlo-Rohexidine的天然替代口腔保健产品。
为了最大程度地减少与强制施用相关的纵向成像和潜在风险的辐射暴露,采取了二维(2D)非对比度轴向轴向单板CT CT,而不是在临床实践中常见的三维(3D)体积CT。然而,很难在纵向成像中找到相同的横截面位置,因此在不同年内捕获的器官和组织存在实质性变化,如图1。在2D腹部切片中扫描的器官和组织与身体成分措施密切相关。因此,增加的位置差异可以准确地分析身体组成的挑战。尽管有这个问题,但尚未提出任何方法来解决2D切片中位置差异的问题。我们的目标是减少位置方差在人体组成分析中的影响,以促进更精确的纵向解释。一个主要的挑战是,在不同年内进行的扫描之间的距离是未知的,因为该切片可以在任何腹部区域进行。图像注册是在其他情况下用于纠正姿势或位置错误的常用技术。但是,这种方法不适合解决2D采集中的平面运动,其中一种扫描中出现的组织/器官可能不会出现在另一种扫描中。基于参考。13,图像协调方法分为两个主要组:深度学习和统计方法。值得注意的统计方法包括战斗14及其变体,15-17 Convbat,18和贝叶斯因子回归。19然而,与生成模型不同,统计方法通常缺乏对我们方案至关重要的生成能力。基于深度学习的现代生成模型最近在生成和重建高质量和现实的图像方面取得了重大成功。20 - 26生成建模的基本概念是训练生成模型以学习分布,以便生成的样品 ^ x〜pdð ^xÞ来自与训练数据分布x〜pdðxÞ的分布相同。27通过学习输入和目标切片之间的联合分布,这些模型可以有效地解决注册的局限性。变化自动编码器(VAE),28是一种生成模型,由编码器和解码器组成。编码器将输入编码为可解释的潜在分布,解码器将潜在分布的样本解码为新数据。生成对抗网络(GAN)20是另一种类型的生成模型,其中包含两个子模型,一个生成新数据的生成器模型和一个区分实际图像和生成图像的歧视器。通过玩这个两人Min-Max游戏,Gans可以生成逼真的图像。Vaegan 29将GAN纳入VAE框架中,以创建更好的合成图像。通过使用歧视器来区分真实图像和生成的图像,Vaegan可以比传统的VAE模型产生更真实和高质量的图像。但是,原始的vaes和gan遭受了缺乏对产生图像的控制的局限性。有条件的GAN(CGAN)30和CONDINATION VAE(CVAE)31解决了此问题,该问题允许生成具有条件的特定图像,从而对生成的输出提供了更多控制。但是,这些条件方法中的大多数都需要特定的目标信息,例如目标类,语义图或热图,在测试阶段32作为条件,这在我们的情况下是不可行的,因为我们没有任何可用的直接目标信息。