摘要,全球未满足的需要快速且具有成本效益的预后和诊断工具,可以在床边或医生中使用,以减少严重疾病的影响。许多癌症被诊断出来,导致昂贵的治疗和预期寿命降低。患有前列腺癌,缺乏可靠的测试抑制了筛查计划的采用。我们报告了一个微电子的现代代谢物生物标志物测量平台,并将其用于前列腺癌检测。平台使用一系列光电检测器配置以单一整合的被动微型流体通道配置有针对性的,多重的,比色测定法,完成了4个代谢物的组合分析,在2分钟内,人类质量的滴剂中的滴剂量。使用L-氨基酸,谷氨酸,胆碱和肌氨酸的初步临床研究用于训练交叉验证的随机森林算法。该系统表现出对前列腺癌的敏感性,为94%,特异性为70%,曲线下的面积为0.78。该技术可以实施许多类似的测定面板,因此有可能彻底改变低成本,快速,护理点测试。
摘要 — 单片 3-D (M3D) 技术通过按顺序将各层堆叠在一起,实现了高密度集成、性能和能源效率。基于 M3D 的片上网络 (NoC) 架构可以通过对路由器内阶段采用层分区来利用这些优势。然而,由于与温度相关的问题,传统的制造方法不适用于支持 M3D 的设计。这需要较低的温度和温度弹性技术来制造 M3D,导致顶层晶体管和底层互连的性能较差。由此产生的层间工艺变化导致支持 M3D 的 NoC 性能下降。在本文中,我们证明,在不考虑层间工艺变化的情况下,支持 M3D 的 NoC 架构在一组 SPLASH-2 和 PARSEC 基准测试中平均高估了能量延迟积 (EDP) 50.8%。作为应对措施,我们采用了一种工艺变化感知设计方法。所提出的设计和优化方法将路由器内部阶段和路由器间链接分布在各层之间,以减轻工艺变化的不利影响。实验结果表明,与工艺无关的设计相比,所考虑的 NoC 架构在所有基准测试中平均将 EDP 提高了 27.4%。
钙钛矿太阳能电池 (PSC) 因其高功率转换效率 (PCE) 和低制造成本而备受关注。人们采用了不同的方法来提高 PSC 的 PCE 和稳定性,例如成分工程 [1,2]、载流子传输层改性 [3] 和异质结构 [4]。最近,具有新颖结构的碳基单片钙钛矿太阳能电池 (mPSC) 已经成为以合理成本商业化大面积钙钛矿太阳能电池 (PSC) 最有前途的设计之一。此外,碳基设计无需使用 Spiro-OMeTAD 等空穴传输材料 (HTM)。由于制造成本也较低,因此可以开发出低成本的光伏系统。为了进一步提高性能,采用了加法工程方法。 mPSC 由四层连续层组成,如图 S1(支持信息)所示,包括玻璃/FTO/致密-TiO 2 /介孔-TiO 2 /介孔-ZrO 2 /碳。这些 mPSC 中填充有钙钛矿,从而分别充当吸光层。在这种设计中,钙钛矿同时充当空穴传输层 (HTL) 和吸收层 [5] 。为了提高 mPSC 的性能,人们探索了不同的技术,包括反溶剂优化 [6] 、后处理 [7] 和添加剂工程 [8] 。从上面提到的方法来看,添加剂工程非常有前景且易于使用,并且在众多
摘要 — 单片 3D 集成已成为满足未来计算需求的有前途的解决方案。金属层间通孔 (MIV) 在单片 3D 集成中形成基板层之间的互连。尽管 MIV 尺寸很小,但面积开销可能成为高效 M3D 集成的主要限制因素,因此需要加以解决。以前的研究主要集中在利用 MIV 周围的基板面积来显着降低该面积开销,但却遭受了泄漏和缩放因子增加的影响。在本文中,我们讨论了 MIV 晶体管的实现,它解决了泄漏和缩放问题,并且与以前的研究相比,面积开销也有类似的减少,因此可以有效利用。我们的模拟结果表明,与之前的实现相比,对于所提出的 MIV 晶体管,漏电流 (ID,leak) 减少了 14 K ×,最大电流 (ID,max) 增加了 58%。此外,使用我们提出的 MIV 晶体管实现的逆变器的性能指标,特别是延迟、斜率和功耗降低了 11.6%,17.与之前的实现相比,在相同的 MIV 面积开销减少的情况下,分别降低了 4.9% 和 4.5%。索引术语 — 单片 3D IC、垂直集成、片上器件
双对数尺度中的频率,以及带有斜率的线性拟合线〜2验证二次功率依赖性。
HAL 是一个多学科开放存取档案馆,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
本文讨论的三种材料中,对单片陶瓷的研究最多。单片陶瓷的研究已经进行了很多年,有多个开发项目已经用这些材料制造了用于发动机测试的部件(参考文献 1 至 3)。最近为热机开发陶瓷部件的努力是能源部赞助的涡轮发动机陶瓷应用 (CATE) 和先进燃气轮机 (AGT) 项目,由 Lewis 管理(参考文献 4 至 12)。迄今为止对单片陶瓷的研究表明,这些材料具有良好的高温强度和抗氧化性,但它们易碎且目前可靠性较低。提高可靠性是单片陶瓷材料面临的主要挑战。单片陶瓷的最高工作温度范围为 2400" F 至 3000' F。
摘要 — 随着光通信的覆盖范围不断缩小,光子学正从机架到机架数据通信链路转向需要不同架构的厘米级计算机内应用 (computercom)。集成光学微环谐振器 (MRR) 正成为满足更严格的面积和效率要求的有吸引力的选择:它们通过波分复用 (WDM) 和高带宽密度提供缩放。在本文中,我们介绍了在 45 nm CMOS 中单片集成的用于 computercom 的紧凑型电光发射 (TX) 和接收 (RX) 宏。它们与 MRR 调制器和光电探测器一起工作,并包括所有必要的电子器件和光学器件,以实现片上数据源和接收器之间的光学链路。通过感测驱动电子器件中的光学设备的偏置电流而不是使用外部工作点感测光学器件,实现了最紧凑的热稳定性实现。使用场效应晶体管作为加热元件(在单片集成平台中是可能的)可进一步减少热控制所需的面积和功率。TX 宏的工作数据速率高达 16 Gb/s,消光比 (ER) 为 5.5 dB,插入损耗 (IL) 为 2.4 dB。RX 宏在 12 Gb/s 时灵敏度为 71 µ A pp,BER ≤ 10 − 10。用宏构建的芯片内链路在 10 Gb/s 时实现 ≤ 2.35 pJ/b 的电气效率和 BER ≤ 10 − 10。两个宏都在 0.0073 mm 2 内实现,每个宏的带宽密度为 1.4 Tb/s/mm 2。
摘要—本文报告了通过与后端工艺 (BEOL) 兼容的原子层沉积 (ALD) 工艺在鳍片结构和集成电路上涂覆 In 2 O 3 3-D 晶体管的实验演示。通过沟道厚度工程和后沉积退火,实现了具有 113 cm 2 /V · s 高迁移率和 2.5 mA/µ m 高最大漏极电流 (ID) 的高性能平面背栅 In 2 O 3 晶体管。演示了基于 ALD In 2 O 3 的高性能零 V GS 负载反相器,其最大电压增益为 38 V/V,最小电源电压 (V DD ) 低至 0.5 V。还演示了通过栅极绝缘体和沟道半导体的低温 ALD 制备的顶栅氧化铟 (In 2 O 3 ) 晶体管,其 ID 为 570 µ A/µ m,亚阈值斜率 (SS) 低至 84.6 mV/decade。然后演示了具有顶栅结构的 ALD In 2 O 3 3-D Fin 晶体管,其受益于 ALD 的保形沉积能力。这些结果表明,ALD 氧化物半导体和器件具有独特的优势,并且有望实现用于 3-D 集成电路的 BEOL 兼容单片 3-D 集成。
摘要:物联网 (IoT) 的快速发展带动了低功耗传感器的开发。然而,物联网扩展的最大挑战是传感器的能量依赖性。为物联网传感器节点提供电源自主性的一个有前途的解决方案是从环境源收集能量 (EH) 并将其转换为电能。通过 3D 打印,可以创建单片收集器。这降低了成本,因为它消除了对后续组装工具的需求。得益于计算机辅助设计 (CAD),收集器可以根据应用的环境条件进行专门调整。在这项工作中,设计、制造并电气表征了压电谐振能量收集器。还进行了压电材料和最终谐振器的物理表征。此外,还使用有限元建模对该设备进行了研究和优化。在电气特性方面,确定该设备在最佳负载阻抗为 4 M Ω 且受到 1 G 加速度时可实现 1.46 mW 的最大输出功率。最后,设计并制造了一个概念验证设备,目的是测量流过电线的电流。