,6$䄢⪌ 运畴 ⼽ ِٚؠׂٜTPVKJLLPմ٭ًشع榫䍚睳浓تةմ⼽
免责声明 本信息是根据美国政府机构赞助的工作编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
两端施加相反自旋极化的有限长度铁磁链是最简单的受挫自旋模型之一。在干净的经典极限中,由于边界条件而插入的畴壁以相等的概率存在于任何一个键上,并且简并度恰好等于键数。如果通过横向场引入量子力学,畴壁将表现为盒子中的粒子,并且更倾向于靠近链的中间而不是两端。因此,真实量子退火器的一个简单特征是这些极限中的哪一个在实践中实现。在这里,我们使用具有反平行边界自旋的铁磁链来测试真实通量量子比特量子退火器,并发现与两个预期相反,由于存在有效随机纵向场,发现的畴壁分布不均匀,尽管在量子比特之间的耦合名义上为零时进行了调整以将这些场归零。我们对畴壁分布函数的形式进行了简单的推导,并展示了我们发现的效应如何用于确定表征退火器的有效随机场(噪声)的强度。以这种方式测量的噪声小于单量子比特调谐过程中看到的噪声,但仍然会定性地影响退火器执行的模拟结果。
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
单畴(永久取向的“单晶”)液晶驱动通常是获得人造软材料类似肌肉驱动的关键方案。[1–3] 然而,由于聚合物弹性体的各向同性,这种物理上偏置的分子结构的需求给经典的合成聚合物弹性体带来了技术挑战。1991 年,Finkelmann 等人 [8] 引入了一种两阶段氢化硅烷化方法,并报道了第一个成功的具有独立驱动功能的“向列液晶单晶弹性体”。在这种方法中,其本质一直是随后二十年制造单畴液晶驱动的首选方案,对轻度交联的凝胶施加单轴机械延伸,以建立内部单轴取向场,然后进行进一步(第二阶段)固化以永久固定该取向。然而,这种方法在实践中非常困难,因为半固化凝胶本身具有机械脆弱性,需要充分拉伸才能实现取向。这降低了液晶元件在不断扩展的变形和驱动应用中的可用性。为了实现更复杂的液晶取向模式并规避分阶段固化问题,人们开发了其他基于外部场的技术,特别是表面取向 [9–12] 和动态键交换。[13–20] 基板的多样化像素定义表面使驱动模式的扩展成为可能,而不仅仅是简单的收缩-伸展。尽管进行了功能化,但材料的规模仍然受到特定基板的限制,并且表面穿透液晶元件本体的深度有限,使得该方法在技术上不足以进行大规模制造。因此,对于通用且灵活的液晶元件制造,机械拉伸仍然是生产多功能功能形式的单畴液晶元件的最简单策略。例如,鉴于聚合物纤维加工方法的成熟,这在编织纤维中尤为突出。人们希望有除氢化硅烷化之外的新化学方法,以便进行稳健的反应和方便的机械排列方式。近年来,二丙烯酸酯反应性液晶原(如 RM257 和 RM82)的商业化供应已成为 LCE 领域的强大推动力,考虑到涉及二丙烯酸酯的一系列良性反应,它提供了一种令人满意的替代方案。特别是,
为了最大程度地减少与强制施用相关的纵向成像和潜在风险的辐射暴露,采取了二维(2D)非对比度轴向轴向单板CT CT,而不是在临床实践中常见的三维(3D)体积CT。然而,很难在纵向成像中找到相同的横截面位置,因此在不同年内捕获的器官和组织存在实质性变化,如图1。在2D腹部切片中扫描的器官和组织与身体成分措施密切相关。因此,增加的位置差异可以准确地分析身体组成的挑战。尽管有这个问题,但尚未提出任何方法来解决2D切片中位置差异的问题。我们的目标是减少位置方差在人体组成分析中的影响,以促进更精确的纵向解释。一个主要的挑战是,在不同年内进行的扫描之间的距离是未知的,因为该切片可以在任何腹部区域进行。图像注册是在其他情况下用于纠正姿势或位置错误的常用技术。但是,这种方法不适合解决2D采集中的平面运动,其中一种扫描中出现的组织/器官可能不会出现在另一种扫描中。基于参考。13,图像协调方法分为两个主要组:深度学习和统计方法。值得注意的统计方法包括战斗14及其变体,15-17 Convbat,18和贝叶斯因子回归。19然而,与生成模型不同,统计方法通常缺乏对我们方案至关重要的生成能力。基于深度学习的现代生成模型最近在生成和重建高质量和现实的图像方面取得了重大成功。20 - 26生成建模的基本概念是训练生成模型以学习分布,以便生成的样品 ^ x〜pdð ^xÞ来自与训练数据分布x〜pdðxÞ的分布相同。27通过学习输入和目标切片之间的联合分布,这些模型可以有效地解决注册的局限性。变化自动编码器(VAE),28是一种生成模型,由编码器和解码器组成。编码器将输入编码为可解释的潜在分布,解码器将潜在分布的样本解码为新数据。生成对抗网络(GAN)20是另一种类型的生成模型,其中包含两个子模型,一个生成新数据的生成器模型和一个区分实际图像和生成图像的歧视器。通过玩这个两人Min-Max游戏,Gans可以生成逼真的图像。Vaegan 29将GAN纳入VAE框架中,以创建更好的合成图像。通过使用歧视器来区分真实图像和生成的图像,Vaegan可以比传统的VAE模型产生更真实和高质量的图像。但是,原始的vaes和gan遭受了缺乏对产生图像的控制的局限性。有条件的GAN(CGAN)30和CONDINATION VAE(CVAE)31解决了此问题,该问题允许生成具有条件的特定图像,从而对生成的输出提供了更多控制。但是,这些条件方法中的大多数都需要特定的目标信息,例如目标类,语义图或热图,在测试阶段32作为条件,这在我们的情况下是不可行的,因为我们没有任何可用的直接目标信息。
微生物驱动全球碳循环1,并可以与宿主生物体建立象征关系,从而影响其健康,衰老和行为2 - 6。微生物种群通过改变可用的代谢物池和专门的小分子7、8的产生与不同的生态系统相互作用。这些群落的巨大遗传潜力被人相关的微型iSms举例说明,该微生物ISM的编码是人类基因组9、10的大约100倍。然而,这种代谢潜力在现代的未纳入代谢组学实验中仍未被反射,其中通常<1%的注释分子可以归类为微生物。这个问题特别影响质谱(MS)基于非靶向代谢组学,这是一种通过微生物11所产生或修饰的分子11的常见技术,该技术在复杂生物学样品的光谱注释中著名地挣扎。这是因为大多数光谱参考文献都偏向于原代代谢产物,药物或工业化学品的市售或以其他方式的标准。即使在注释代谢物时,也需要进行广泛的文献搜索,以了解这些分子是否具有微生物起源并识别各自的微生物生产者。公共数据基础,例如Kegg 12,Mimedb 13,Npatlas 14和Lotus 15,可以帮助进行这种解释,但它们大部分限于已建立的,很大程度上基因组所涉及的代谢模型或完全表征和发行的分子结构。此外,虽然旨在从机械上开发了旨在询问肠道微生物组的靶向代谢组学努力16,但它们仅着眼于相对较少的商业可用的微生物分子。因此,尽管MS参考文库不断扩大,但大多数微生物化学空间仍然未知。为了填补这一空白,我们已经开发了Microbemasst(https://masst.gnps2.org/microbemasst/),这是一种利用的搜索工具
超敏光谱是中红外(MIR)技术的重要组成部分。然而,miR探测器的缺点在单光子水平上对稳健的miR光谱构成了挑战。我们提出了miR单光子频率上转换光谱非局部将miR信息映射到时间do-main。来自自发参数下调的宽带miR光子频率向上转换为具有量子相关性保存的近红外带。通过纤维的组延迟,在1.18微米的带宽为2.76至3.94微米内的miR光谱信息被成功地投影到相关光子对的到达时间。在每秒6.4×10 6光子的条件下,使用单像素检测器证明了具有单光子敏感性的聚合物的传输光谱。开发方法绕过扫描和频率选择不稳定性,它在不断发展的环境中固有的兼容性和各种波长的可伸缩性而引人注目。由于其高灵敏度和鲁棒性,生化样品的表征和量子系统的弱测量值可能是预见的。