• 中枢、周围和自主神经系统 • 视觉:(a) 功能解剖学;(b) 视野、中央凹和周边视觉;(c) 双眼和单眼视觉;(d) 单眼视觉线索;(e) 夜视;(f) 视觉扫描和检测技术以及“观察”的重要性;(g) 视力缺陷。
自然发生的集体运动是一种引人入胜的现象,其中蜂拥而至的自发和协调其运动。许多蜂群的理论模型都假定理想化,完美的感知能力,而忽略了基本的感知过程,尤其是对于依靠视觉感知的代理商而言。具体而言,许多蝗虫等许多蜂群中的生物视觉利用了单眼非镜像视觉,从而防止了距离和速度的完美获得。此外,蜂群的同伴可以在视觉上相互阻塞,从而进一步引入估计错误。在这项研究中,我们探索了使用非镜镜,单眼视觉在受限条件下出现有序集体运动的必要条件。我们提出了一种基于视觉的聚集运动模型,用于蝗虫样药:拉长形状,平行于水平平面的全向视觉传感器,缺乏立体深度感知。该模型解决了(i)距离和速度的非镜镜估计,(ii)视野中存在闭塞。我们考虑并比较代理商可能用来以视觉感知过程所需的计算复杂性为代价来解释部分视觉信息的三种策略。在各种几何环境(环形,走廊和环形领域)进行的计算机模拟实验表明,这些模型可以导致有序的或近地有序状态。同时,它们在达到顺序的速度上有所不同。此外,结果对代理的伸长敏感。在几何受限的环境中进行的实验揭示了模型之间的差异,并阐明了使用它们来控制蜂群剂时可能的权衡。这些建议用于进一步研究生物学和机器人技术的途径。
摘要人类机器人合作(HRC)在先进的生产系统中越来越重要,例如在行业和农业中使用的系统。这种类型的协作可以通过减少人类的身体压力来促进生产率的提高,从而导致伤害减少并改善士气。HRC的一个关键方面是机器人安全遵循特定的人类操作员的能力。为了应对这一挑战,提出了一种新的方法,该方法采用单眼视力和超宽带(UWB)收发器来确定人类目标相对于机器人的相对位置。UWB收发器能够用UWB收发器跟踪人类,但具有显着的角度误差。为了减少此错误,使用深度学习对象检测的单眼摄像机来检测人类。使用基于直方图的滤波器结合了两个传感器的输出,可以通过传感器融合来减少角度误差。此过滤器项目并将两个源的测量值与2D网格相交。通过结合UWB和单眼视觉,与单独的UWB定位相比,角度误差的降低了66.67%。这种方法表明,以0.21 m/s的平均速度跟踪人行走时,平均处理时间为0.0183,平均定位误差为0.14米。这种新颖的算法有望实现有效和安全的人类机器人合作,为机器人技术提供了宝贵的贡献。