摘要野生山药Hirtiflora subsp。Orientalis是坦桑尼亚Mtwara农村地区的本地,尽管其营养和健康益处可观,但仍未得到充分利用。这项研究旨在评估其块茎的营养成分和抗氧化特性。使用标准的AOAC程序来分析干块茎样品,同时评估了抗氧化剂和抗氧化剂能力。发现块茎的含量从21.02%到23.57%,原油蛋白从1.0%到1.5%,粗脂质在0.46%至0.68%之间,粗纤从11.26%到13.52%,至13.52%,至97.26至101.1.1.1.1.1.1 kcal/100 g。维生素C含量从18.9至26.4 mg/100 g,β-胡萝卜素从4.15到17.8 µg/g,番茄红素从6.89到9.10 µg/g。甲醇提取物显示,总酚含量范围为60.28至122.51 mg gae/g,类黄酮含量为599至1240.4 mg rue/g,具有显着的DPPH自由基清除活性,表现为EC 50的EC 50的0.04 mg/ml的EC 50,用于棕色的Tuber Expraction和0.09 MG/ML的EC 509 mg/ml。这些发现表明,hirtiflora是重要营养素和抗氧化剂的丰富来源,具有增强局部饮食的潜力,并作为开发富含抗氧化剂的补充剂或功能性食品的基础。未来的研究应着重于提取提取技术并探索这一宝贵块茎的健康应用。关键字:野生山药(Dioscorea Orientalis);营养成分;酚类黄酮含量;抗氧化活性简介
“我们期待与该项目紧密合作,这是在中西部解锁可再生能源生产机会的关键,从而提高了我们北部网络的关键能力,以使工业和社区受益。我们正在不断调查网络容量的扩展和加强选择,以最大程度地利用现有网络基础设施,走廊和地役权,并最大程度地减少对社区和环境的影响。
摘要 二维 (2D) 范德华过渡金属磷三硫属化物家族由于其固有的 2D 反铁磁性而重新引起了人们的关注,这证明它们是单层极限下自旋电子学和磁子学中前所未有且高度可调的构建块。在此,受 Janus 过渡金属二硫属化物中表现出的原子取代潜能的启发,我们从第一性原理研究了基于 MnPS 3 和 NiPS 3 的硒化 Janus 单层的晶体、电子和磁性结构。此外,我们计算了磁振子色散并进行实时实空间原子动态模拟,以探索自旋波在 MnPS 3 、NiPS 3 、MnPS 1.5 Se 1.5 和 NiPS 1.5 Se 1.5 中的传播。我们的计算预测磁各向异性将大幅增强,并会出现较大的 Dzyaloshinskii-Moriya 相互作用,这是由于 2D Janus 层中诱导的反演对称性破缺所致。这些结果为开发 Janus 2D 过渡金属磷三硫属化物铺平了道路,并凸显了它们在磁子应用方面的潜力。
混合离子电容器 (HIC) 是一种快速发展的技术,它结合了电池和 SC 的最佳特性,可在长时间内以高速率产生巨大的能量密度。根据之前的研究,这些 HIC 可以提供 60 到 200 W h kg 1 之间的能量(考虑到活性材料的质量),优于传统的 SC,它们的主要强度在 200 到 20 000 W kg 1 之间,大大高于电池。20,21 与锂(0.0017%)相比,钠(Na,2.6%)和钾(K,2.1%)在地壳中储量丰富,使它们成为促进电池发展的有希望的替代品。22,23 此外,K 和 Na 都属于元素周期表中锂之后的同一组,表现出相似的物理化学性质。因此,对 Na + /K + 存储技术的研究正在获得发展势头,为成功的可再生能源存储系统商业化铺平了道路。 24 K + 存储装置之所以受到关注,是因为它们的工作电压比 Na 离子存储装置高,电解质中的离子电导率也更出色。例如,K/K + 氧化还原对的电位为 2.93 V(相对于标准氢电极 (SHE)),低于 Na/Na +
ETMOS 项目旨在通过分子束外延 (MBE) 和脉冲激光沉积 (PLD) 开发电子级过渡金属二硫属化物 (TMD) 的大面积生长。根据最近关于在六方晶体衬底上生长的 MoS2 外延质量的报告和初步结果,我们将推动这些材料在宽带隙 (WBG) 六方半导体 (SiC、GaN、AlN、AlGaN 合金) 和绝缘蓝宝石上的外延层生长。五个合作伙伴在薄膜生长 (CNRS、SAS)、高级特性和模拟 (CNR、HAS、U-Pa)、加工和电子设备原型 (CNR) 方面拥有互补的技能。将在不同衬底 (Si、蓝宝石、SiC、块状 GaN) 上生长 WBG 半导体模板/薄膜,以完全控制起始材料的特性并制备外延就绪表面,从而实现高质量和均匀的 TMD MBE 和 PLD 生长。沉积范围将从单层 (1L) 到几层 (最多 5) MoS2 和 WSe2,并在直径最大为 100 毫米的晶片上控制亚单层厚度。将开发 MBE 或 PLD 期间的 TMD 替代掺杂,重点是 MoS2 的 p+ 掺杂,这对设备应用具有战略意义。除了生长设施外,ETMOS 联盟还拥有整套形态、结构、化学、光学和电扫描探针表征,有助于在每个生长步骤中实现高质量。将通过专门设计的测试设备研究 TMD 的电性能 (掺杂、迁移率、电阻率等) 以及跨 TMD/WBG 异质结的电流传输。实验将通过生长模拟和 WBG 上 TMD 电子能带结构的从头计算来补充。将制定多尺度表征协议,以将我们的外延 TMD 与使用相同或互补沉积方法的其他小组的结果进行对比。最后,将制造利用 TMDs/WBG 异质结特性的器件原型,包括:(i) 基于 p+-MoS2 与 n-GaN 或 n-SiC 原子突变异质结的带间隧穿二极管和晶体管;(ii) MoS2/GaN 和 MoS2/SiC UV 光电二极管;(iii) 具有 Al(Ga)N/GaN 发射极和 1L TMD 基极的热电子晶体管。开发的材料/工艺的目标是在项目结束时达到 TRL=5。由于 ETMOS 合作伙伴与 SiC 和 GaN 领域的领先工业企业(STMicroelectronics、TopGaN、Lumilog)保持着持续合作,因此来自行业的代表将成为 ETMOS 顾问委员会的成员,为工艺与生产环境的兼容性提供指导。我们的 TMDs 生长活动与常用的 CVD 方法高度互补。我们预计与石墨烯旗舰项目第 1 和第 3 部门的团队将产生强大的协同作用,从而促进欧洲在 TMD 和设备应用大面积增长方面的能力。
1 麻省理工学院材料科学与工程系,美国马萨诸塞州剑桥 02139 2 魏茨曼科学研究所化学与生物物理系,以色列雷霍沃特 76100 3 博洛尼亚 INSTM-UdR 工业化学系“Toso Montanari”,意大利博洛尼亚 40129 4 林雪平大学物理、化学和生物系(IFM),瑞典林雪平 SE-581 83。 5 Mork Family 南加州大学化学工程与材料科学系,美国加利福尼亚州洛杉矶 90089 6 魏茨曼科学研究所分子化学与材料科学系,以色列雷霍沃特 76100 7 Ming Hsieh 南加州大学电气与计算机工程系,美国加利福尼亚州洛杉矶 90089 8 南加州大学纳米成像核心卓越中心 (CNI),美国加利福尼亚州洛杉矶 90089(日期:2024 年 10 月 11 日)
锂硫电池 (LSB) 是后 LIBs 技术最有前途的候选者之一。[10–12] 在 LSB 中,通过硫和锂之间的多电子反应可实现 1675 mAh g −1 的理论容量。放电过程中会出现两个不同的电压平台。在较高的电压平台(约 2.3 V)下,S 的最稳定的同素异形体 S 8 的环状结构被破坏,形成长链多硫化锂;一开始是 Li 2 S 8 ,然后进一步还原为 Li 2 S 6 和 Li 2 S 4 。在较低的电压平台(约 2.1 V),长链多硫化锂进一步还原为 Li 2 S 2 和 Li 2 S。[13,14] 除了理论容量高之外,地球上 S 的储量丰富、价格低廉以及环境友好等特性使得 LSB 比 LIB 更便宜。然而,LSB 的工业化进程中仍存在一些障碍。[15,16] 首先,S 和放电产物 Li 2 S 本质上都是绝缘的(≈ 5 × 10 − 30 S cm − 1)。电极材料的低电导率会影响电池的电化学性能,尤其是在高电流密度下。其次,充放电过程中体积变化大会导致安全性和稳定性问题。由于 S 和 Li 2 S 的密度差异,当 S 转移到 Li 2 S 时,体积变化将高达 75%。最后,臭名昭著的穿梭效应会进一步导致性能下降。充放电过程中形成的多硫化锂可溶于电解液。这些中间体在正极和负极之间穿梭,并通过公式(1)和(2)所示的化学反应或电化学反应与电极材料发生反应,导致锂负极的消耗和“死”硫的形成,最终导致库仑效率和稳定性降低。
时,并且学术论文揭示了基因交换在自然界中发生,而这些物种是微生物,是微生物源自供体,宿主和表达质粒的微生物,用于生产的微生物中的DNA的质粒属于这些物种。 1)在同行评审论文中出版2)由多位专家(例如学术社会的职位论文)所证明的论文。
摘要:最近,人们对使用各种“催化剂”的兴趣日益浓厚,以进一步丰富逆硫化反应的基质范围。虽然关于这些催化剂的作用机理已经有了若干提案,但是这些混合物中硫的形态仍然难以捉摸。作为了解这些催化剂何时以及是否适用的关键要素,我们试图通过尝试表征硫的形态来阐明二硫代氨基甲酸盐物质在逆硫化反应中的作用。无论是否含有金属二硫代氨基甲酸盐、二乙基二硫代氨基甲酸钾 (K-DTC),含有不同官能团与硫的各种基质的反应效率都表明形成了快速波动的硫形态,最重要的是,存在阴离子硫。最后,根据我们的研究结果,提出了一些关于使用二硫代氨基甲酸盐催化剂的最佳实践的建议。