低运营成本 AWS 是精心设计的成果,旨在优化冷水机组的能源效率,从而降低运营成本,提高盈利能力、效率和经济管理。AWS 冷水机组采用新型高效 McQuay 单转子螺杆压缩机设计,大冷凝器盘管表面积可实现最大热传递和低排放压力,采用先进技术的冷凝器风扇,单程纯逆流壳管直接膨胀蒸发器,制冷剂压降低。低运行噪音水平 最新的压缩机设计使用单个主转子和两个相邻的旋转复合闸转子,使气体流速和随后的噪音水平达到最低水平,独特的新型风扇以极低的噪音水平移动大量空气,并且几乎无振动运行,因此在满负荷和部分负荷条件下的噪音水平都非常低。出色的可靠性 AWS 冷水机组根据尺寸有两个或三个真正独立的制冷剂回路,以确保任何维护(无论是计划内还是非计划内)的最大安全性。它们配备了坚固的压缩机设计,采用先进的复合压缩机闸转子材料和主动控制逻辑,并经过了完整的工厂运行测试,以实现优化的无故障运行。无限容量控制制冷容量控制通过微处理器系统控制的单螺杆非对称压缩机无级变化。每个单元都具有从 100% 降至 12%(双压缩机单元)或 7%(三压缩机单元)的无级容量控制。这种调节可使压缩机容量与建筑物冷却负荷完全匹配,而不会导致蒸发器水温波动。只有通过无级控制才能避免这种冷冻水温度波动。事实上,通过压缩机负荷阶跃控制,在部分负荷下,压缩机容量与建筑物冷却负荷相比会过高或过低。结果是降低了冷却器的能量成本,特别是在冷却器大部分时间运行的部分负荷条件下。无级调节单元具有阶跃调节单元无法比拟的优势。能够随时跟踪系统能源需求,并且能够提供稳定的出水温度,不会偏离设定点,这两点让您明白,只有使用无级调节装置才能满足系统的最佳运行条件。 卓越的控制逻辑 新的 MicroTech III 控制器提供易于使用的控制环境。控制逻辑旨在提供最高效率,在异常运行条件下继续运行,并提供装置运行历史记录。最大的好处之一是易于与 LonWorks、Bacnet 接口,以太网 TCP/IP 或 Modbus 通信。
低运营成本 AWS 是精心设计的成果,旨在优化冷水机组的能源效率,从而降低运营成本,提高盈利能力、效率和经济管理。AWS 冷水机组采用新型高效 McQuay 单转子螺杆压缩机设计,大冷凝器盘管表面积可实现最大热传递和低排放压力,采用先进技术的冷凝器风扇,单程纯逆流壳管直接膨胀蒸发器,制冷剂压降低。低运行噪音水平 最新的压缩机设计使用单个主转子和两个相邻的旋转复合闸转子,使气体流速和随后的噪音水平达到最低水平,独特的新型风扇以极低的噪音水平移动大量空气,并且几乎无振动运行,因此在满负荷和部分负荷条件下的噪音水平都非常低。出色的可靠性 AWS 冷水机组根据尺寸有两个或三个真正独立的制冷剂回路,以确保任何维护(无论是计划内还是非计划内)的最大安全性。它们配备了坚固的压缩机设计,采用先进的复合压缩机闸转子材料和主动控制逻辑,并经过了完整的工厂运行测试,以实现优化的无故障运行。无限容量控制制冷容量控制通过微处理器系统控制的单螺杆非对称压缩机无级变化。每个单元都具有从 100% 降至 12%(双压缩机单元)或 7%(三压缩机单元)的无级容量控制。这种调节可使压缩机容量与建筑物冷却负荷完全匹配,而不会导致蒸发器水温波动。只有通过无级控制才能避免这种冷冻水温度波动。事实上,通过压缩机负荷阶跃控制,在部分负荷下,压缩机容量与建筑物冷却负荷相比会过高或过低。结果是降低了冷却器的能量成本,特别是在冷却器大部分时间运行的部分负荷条件下。无级调节单元具有阶跃调节单元无法比拟的优势。能够随时跟踪系统能源需求,并且能够提供稳定的出水温度,不会偏离设定点,这两点让您明白,只有使用无级调节装置才能满足系统的最佳运行条件。 卓越的控制逻辑 新的 MicroTech III 控制器提供易于使用的控制环境。控制逻辑旨在提供最高效率,在异常运行条件下继续运行,并提供装置运行历史记录。最大的好处之一是易于与 LonWorks、Bacnet 接口,以太网 TCP/IP 或 Modbus 通信。
背景 ARBEC FOREST PRODUCTS INC. 产品 FORESTIERS ARBEC INC. (ARBEC) 购买了位于米拉米奇市的定向刨花板 (OSB) 工厂,该工厂原由 Weyerhaeuser Company Limited 拥有和经营。OSB 工厂于 1996 年投入使用,并以 Eagle Forest Products 的名义开始运营。Weyerhaeuser 随后于 2000 年 6 月购买了该工厂,并运营该设施直到 2007 年 1 月工厂因市场状况而关闭。ARBEC 于 2012 年秋季开始运营 OSB 工厂。米拉米奇的工厂生产尺寸为 4 英尺 x 8 英尺的 OSB 板。OSB 板主要用于住宅建筑。面板用于墙面护套、屋顶和结构地板。米拉米奇生产的大部分产品销往加拿大和美国。该工厂约有 150 名员工。工艺描述 简介 在米拉米奇的 OSB 工厂,所有木材都以圆木的形式通过卡车运送到现场,通常长度为 8 英尺。圆木通过两个自清洁闭环热池之一进入工厂,开始制造过程。热池的作用是在剥皮前松开木材上的树皮,并在冬季解冻冻结的原木。从热池出来的木材进入两个环形剥皮机之一,以去除原木上的树皮。然后,在三个刨片机之一中,将原木切成大约 0.03 英寸厚的小木条。木条在三个单程干燥机之一中干燥,其中刨片的含水量从 75 - 100 % 降低到 1.5 - 3 %。干燥的刨片进入两个大直径滚筒混合机之一,在那里与乳化蜡和液态树脂混合。然后,薄片在成型机上被排列成层,然后在高压和高温下压制以形成定向刨花板。然后将板切割成合适的尺寸,包装和储存,然后运送给客户。压机、热池和一般建筑物的热量是由炉中木材残余物的燃烧产生的。下面提供了热能系统、干燥机和空气污染控制设备的更详细描述。热能系统剥皮过程中产生的所有树皮和湿木材残余物都作为燃料在燃木炉中燃烧,为工厂产生热量。燃木炉由 GTS Energy Systems 制造,热额定值为 8650 万 kJ/小时(8200 万 BTU/小时)。轻油(#2 燃料油)用作 GTS 炉的备用燃料。燃木炉燃烧室内的温度保持在 450°C 至 1000°C(842°F 至 1832°F)之间。来自燃烧室的热气体通过一个系统来加热加热线圈内的导热油。加热后的导热油被泵送到各种
低运营成本 AWS 是精心设计的成果,旨在优化冷水机组的能源效率,从而降低运营成本,提高盈利能力、效率和经济管理。AWS 冷水机组采用新型高效 McQuay 单转子螺杆压缩机设计,大冷凝器盘管表面积可实现最大热传递和低排放压力,采用先进技术的冷凝器风扇,单程纯逆流壳管直接膨胀蒸发器,制冷剂压降低。低运行噪音水平 最新的压缩机设计使用单个主转子和两个相邻的旋转复合闸转子,使气体流速和随后的噪音水平达到最低水平,独特的新型风扇以极低的噪音水平移动大量空气,并且几乎无振动运行,因此在满负荷和部分负荷条件下的噪音水平都非常低。出色的可靠性 AWS 冷水机组根据尺寸有两个或三个真正独立的制冷剂回路,以确保任何维护(无论是计划内还是非计划内)的最大安全性。它们配备了坚固的压缩机设计,采用先进的复合压缩机闸转子材料和主动控制逻辑,并经过了完整的工厂运行测试,以实现优化的无故障运行。无限容量控制制冷容量控制通过微处理器系统控制的单螺杆非对称压缩机无级变化。每个单元都具有从 100% 降至 12%(双压缩机单元)或 7%(三压缩机单元)的无级容量控制。这种调节可使压缩机容量与建筑物冷却负荷完全匹配,而不会导致蒸发器水温波动。只有通过无级控制才能避免这种冷冻水温度波动。事实上,通过压缩机负荷阶跃控制,在部分负荷下,压缩机容量与建筑物冷却负荷相比会过高或过低。结果是降低了冷却器的能量成本,特别是在冷却器大部分时间运行的部分负荷条件下。无级调节单元具有阶跃调节单元无法比拟的优势。能够随时跟踪系统能源需求,并且能够提供稳定的出水温度,不会偏离设定点,这两点让您明白,只有使用无级调节装置才能满足系统的最佳运行条件。 卓越的控制逻辑 新的 MicroTech III 控制器提供易于使用的控制环境。控制逻辑旨在提供最高效率,在异常运行条件下继续运行,并提供装置运行历史记录。最大的好处之一是易于与 LonWorks、Bacnet 接口,以太网 TCP/IP 或 Modbus 通信。
h˚astad,Impagliazzo,Levin和Luby [Hill99]提出了从古典OWF的古典PRG结构。[Hill99]中的想法是第一个附加HH P X Q(其中H,H P X Q是种子和基于2-宇宙Hash函数提取器的种子,输出的输出)才能增加f P X Q,以增加有关x Q x Q x q q hh p x q的信息的数量。此(一种)使XñfP x q hh p x q一个注入函数。在附加HH P X Q时,需要确保所得函数保持单程。为此,可以接受| H P X Q |大约是s 2 p x | F P X QQ确保HH P X Q几乎与F P X Q无关。此处sαp - 代表α -r´enyi熵(请参见定义5)。在[Hill99]中,| H P X Q |取决于F P X Q的预图数,因此需要在结果F P X Q上进行条件。 然后,他们将硬核函数g P x q附加到f p x q hh p x q。 这样做,从f p p p x q q x q hh p x q x q b u |保持计算的不可区分性。 G P X Q | 。 由于F P X Q HH P X Q携带有关X(注射率)的大多数信息,因此他们认为F P X Q HH P X Q G P X Q X Q&F P X Q&F P X Q HH P X Q B U | G P X Q |在统计上相距很远,因此产生了EFI对。在[Hill99]中,| H P X Q |取决于F P X Q的预图数,因此需要在结果F P X Q上进行条件。然后,他们将硬核函数g P x q附加到f p x q hh p x q。这样做,从f p p p x q q x q hh p x q x q b u |保持计算的不可区分性。 G P X Q | 。由于F P X Q HH P X Q携带有关X(注射率)的大多数信息,因此他们认为F P X Q HH P X Q G P X Q X Q&F P X Q&F P X Q HH P X Q B U | G P X Q |在统计上相距很远,因此产生了EFI对。
电池技术的开发已经快速进步,并且已经针对多种类型的应用使用了电池:从小型便携式设备(例如装有最大300克电池的手机和笔记本电脑)到电动汽车和持有数百千克电池的重型应用。由于能量过渡而对电池的需求需要大量材料;但是,欧盟没有足够的矿山来满足这一需求。因此,已经宣布了许多用于从欧洲城市矿山收回此类关键材料的倡议。欧洲电池法规已经设定了电池中包含的某些元素的最低回收水平,例如钴(85%),铅(6%),锂(6%)和镍(6%)(6%),从制造和消费者废物中重复使用新电池。荷兰和荷兰公司也已经解决了紧迫性:电池价值链的需求以保护荷兰所需的电池材料和组件。在这方面,预计到2050年,荷兰经济将完全循环,并在2030年减少一半的原材料。这些目标与2030年的可持续发展目标和巴黎协定保持一致。实现固体电池价值链的第一步之一是对电池技术以及回收技术进行技术评估。在过去的几十年中,已经开发了多种阴极活性材料,主要集中在使用锂,钴,镍和锰。本报告概述了电池技术,现在和将来都针对阴极有效材料进行了特定的关注,并探讨了不同电池化学物质对材料回收的影响。阴极活性材料组成的变化通常是由四个重要因素驱动的:由于钴地雷中钴的成本高以及劳动条件差,钴的浓度已降低。然后,为了提高电池的性能,镍的浓度已经增加。最后,将铁磷酸锂用作阴极的活性材料的使用显着降低了电池的价格,使其对例如重型申请。电池是包含各种材料的复杂产品。但是,根据电池构造的复杂性,可以手动拆除许多组件,外壳和电子设备以进行高质量的回收利用。其他组件,例如细胞外壳,当前的收集器和活性材料,无法拆除,而是粉红色并以这种方式混合在一起。大多数回收技术采用了预处理步骤,包括几个分离步骤,从细胞放电开始,高压灭菌/切碎和进一步的分离步骤开始,并在基水透明处理途径之前,产生了中间产品,黑色质量。黑色质量大多包含来自阴极和阳极的活性材料,其中约占电池总重量的25%,但也占当前收集器和分离器的小颗粒。后者约占总电池重量的40%,但在预处理过程中大部分与黑色质量分数分开。未来的电池技术将使单程合适的设计变得复杂:新的电池技术使用其他元素,在LTO和NTO阳极的情况下,用于Si-C阳极的钛和硅,或包含更复杂的结构,如Quasi固态炮台而言。在短期内,这些电池技术尚未回收,因为它们尚未以工业规模生产。在这样的电池以这种规模生产并延伸到寿命的时间时,对传记进行分类变得很重要。因此,第一个重要的寿命流将主要包含具有NMC,NCA和LFP化学性质的电池。电池回收技术(黑色质量)的中间产品的组成强烈依赖于预处理过程中粉刷的电池化学反应。将喂入预处理过程的电池化学组合在