虽然存在建立的单组分存储系统的确定性能力计划模型,但很少关注使用基于群体的元元素算法的混合储能系统(ESSS)的概率大小。这重点介绍了两个关键的研究机会,即:(1)研究保存模型及其特性的影响,并优化每日系统调度对混合ESS设计中的狭窄现实差距,以及(2)基于潜在的具有重大财务设计的杂种微网格中混合ESS中的混合ESS整合到网格连接的微网络中。在响应中,本文中的本文基于最先进的元易启发式算法的新型概率混合能力计划优化模型。为了证明该模型在社区微网络方案中的有效性,提出了新西兰Aotearoa的生态村庄的案例研究。模拟结果表明,在最有可能的情况和最坏情况的概率场景中,分别高于确定性结果的溢价约为4%和〜36%。另一方面,发现混合ESS的生命周期成本的最佳随机估计值比确定性建模低约39%。此外,还研究了使用电池库的暂时性套利经济学,表明以固定的LifePo 4电池的当前资本成本和目前的固定饲料税(NZ $ 0.08/kWh),仅出于套利原因而循环存储在经济上是不可行的。总而言之,本文重点介绍了结合概率的选择误差技术的迫切需要,并强调在设计混合ESS以将混合ESS集成到网格连接的微网格中时,大小和调度合作的重要性。
杂质(Cl-)ppm < 1.5 描述 陶氏有机硅微电子胶粘剂产品旨在满足微电子和光电子封装行业的关键标准,包括高纯度、防潮性以及热稳定性和电稳定性。陶氏有机硅微电子胶粘剂产品具有出色的应力消除和高温稳定性,可出色地无需底漆粘附于各种基材和部件。这些产品非常适合需要低模量材料的微电子设备、无铅焊料回流温度(260°C)或其他高可靠性应用。这些材料具有湿式分配和预固化薄膜产品形式,可满足设备封装应用的广泛需求。陶氏有机硅微电子胶粘剂产品以方便的单组分材料形式提供,具有针对导电性、电绝缘性或导热性开发的特定配方,所有这些都通过热固化而不会产生副产品。表面准备 所有表面都应使用 DOWSIL™ OS 液体、石脑油、矿物油或甲基乙基酮 (MEK) 等溶剂彻底清洁和/或除油。建议尽可能进行轻微表面打磨,因为这样可以促进良好的清洁并增加粘合表面积。最后用丙酮或 IPA 擦拭表面也有助于去除其他清洁方法可能留下的残留物。在某些表面上,不同的清洁技术会比其他技术产生更好的效果。用户应确定最适合其应用的技术。 基材测试 由于基材类型多样且基材表面条件不同,因此无法对粘合强度和粘合强度做出一般性陈述。为了确保在特定基材上的最大粘合强度,需要使粘合剂在搭接剪切中 100% 内聚破坏或具有类似的粘合强度。这可确保粘合剂与所考虑的基材兼容。此外,此测试可用于确定最短固化时间或检测表面污染物(如脱模剂、油、油脂和氧化膜)的存在。
目的:由于纳米载体的缺点,无载体纳米递送系统的开发在癌症治疗中受到越来越多的关注,但目前对无载体纳米系统能同时实现监测功能的研究较少。本文建立了一种负载姜黄素和盐酸伊立替康的多功能无载体纳米系统,用于胃癌的治疗和监测。方法:本研究制备了前期的盐酸伊立替康-姜黄素纳米系统(该体系命名为SICN)。基于姜黄素的荧光,利用流式细胞术、激光共聚焦显微镜和斑马鱼荧光成像技术研究了SICN在体内和体外的监测功能。此外,还利用HGC-27人胃癌细胞研究了SICN的细胞毒性。结果:流式细胞术和斑马鱼荧光成像监测结果显示,SICN的摄取率明显高于游离姜黄素,排泄率较低。 SICN在细胞和斑马鱼中具有更高的蓄积和滞留。激光共聚焦显微镜监测结果显示,SICN通过巨胞饮、caveolin、网格蛋白介导和非网格蛋白依赖的内吞等多种途径内化进入HGC-27细胞,并在细胞内分布于整个胞浆,包括溶酶体和高尔基体。体外细胞实验表明,SICN纳米粒子比单一组分毒性更大,微酸性条件下HGC-27细胞对纳米粒子的吸收更多,毒性更大。结论:SICN是一种很有前途的无载体纳米粒子,两种单组分联合治疗可发挥协同抗肿瘤作用。当暴露于肿瘤酸性环境中,SICN由于电荷转换而表现出更强的细胞毒性。更重要的是,纳米粒子的自我监测功能得到了发展,为肿瘤的联合治疗开辟了新的思路。关键词:无载体,盐酸伊立替康,姜黄素,多功能纳米粒子
现代航天器和运载火箭的设计更倾向于降低系统级设计和组装的复杂性。为了在降低这些复杂性的同时保持较高的整体系统性能,使用智能材料和智能结构部件是一种众所周知的做法,目前越来越受到空间系统设计人员的关注。本文讨论了智能空间结构的概念,特别是用于航天器和运载火箭应用的嵌入光纤传感器 (OFS) 的碳纤维复合材料结构。本研究重点介绍了此类油箱的操作要求以及光纤传感器实现的智能功能。对于后者,对光纤布拉格光栅传感器 (FBG) 和基于光频域反射仪 (OFDR) 的分布式光纤传感器 (DOFS) 进行了定量比较,以说明它们的核心性能参数,例如灵敏度、传感范围、动态测量能力和空间分辨率。与传统电子传感器相比,光纤传感器在恶劣环境中的性能和可靠性提高,同时尺寸、质量和功耗降低。嵌入碳纤维结构的光纤传感器已证明其能够提供准确的实时温度测量和监测结构完整性,同时精确检测可能的破裂和故障点,如文献综述中讨论和展示的那样。光纤传感在智能推进剂储罐中的应用可能会扩展到检测流体泄漏,还可以通过温度映射提高推进剂计量的精度,并可用于地面鉴定、飞行前测试以及在轨运行、状况和结构健康监测。本文介绍了一种在复合材料压力容器中嵌入 FOS 的最佳方法,并讨论了光纤传感器的相关放置和定位方法,并结合了一个简化的单组分分析应力-应变传递模型,该模型推导出沿最大主方向(即 σ Max Principal )的应力分量。这种新方法被认为可用于在复合材料结构(例如航天器中的压力容器和轻质结构)中最佳地使用嵌入式 FOS。人们相信,简化的模型将为有效的数据解释和处理铺平道路,利用航天器上有限的计算资源。
摘要:胶体纳米晶体 (NC) 的自组装在固态材料的多尺度工程中具有巨大前景,通过这种技术,原子工程 NC 构件被排列成具有协同物理和化学性质的长程有序结构 超晶格 (SL)。迄今为止,报告主要集中在球形 NC 的单组分和二元系统上,产生的 SL 与已知的原子晶格同构。通过组合各种形状的 NC,可以预期获得远远超出已知晶格范围的更大结构空间。本文报道了空间稳定的 CsPbBr 3 纳米立方体 (5.3 纳米) 与圆盘状 LaF 3 NC (直径 9.2 - 28.4 纳米,厚度 1.6 纳米) 共组装成二元 SL 的过程,产生了具有 AB、AB 2 、AB 4 和 AB 6 化学计量的六柱状结构,这在之前和我们的参考实验中均未观察到,参考实验中使用由球体和圆盘组成的 NC 系统。本文使用填充密度计算合理化了立方体形状的这种惊人效果。此外,在尺寸相当的纳米立方体(8.6 纳米)和纳米盘(6.5 纳米、9.0 纳米、12.5 纳米)系统中,还观察到了其他非柱状结构,例如 ReO 3 型 SL,其特征是盘和立方体的紧密混合和面对面排列,纳米立方体的面心立方或简单立方亚晶格,以及每个晶格位置有两个或三个盘。层状和 ReO 3 型 SL 采用大型 8.6 纳米 CsPbBr 3 NC,表现出集体超快光发射 超荧光 的特征,源自激发态发射偶极子的相干耦合。关键词:胶体纳米晶体、纳米晶体形状、自组装、二元超晶格、电子显微镜、卤化铅钙钛矿、超荧光 I
志贺氏菌是继轮状病毒之后,五岁以下儿童中第二大致命性腹泻病,在发展中国家发病率和死亡率都很高。目前,尚无广泛使用的疫苗,而且多药耐药性水平的不断提高使得志贺氏菌成为疫苗开发的重中之重。使用 GMMA 技术开发的针对宋内志贺氏菌 (1790GAHB) 的单组分候选疫苗含有脂多糖 (LPS) 的 O 抗原 (OAg) 部分作为活性部分。该疫苗在早期临床试验中耐受性良好且具有免疫原性。在法国的一项 1 期安慰剂对照剂量递增试验 (NCT02017899) 中,健康成人接种了三剂五种不同疫苗制剂(0.06/1、0.3/5、1.5/25、3/50、6/100 µg OAg/蛋白质)。在原研究之后 2 - 3 年进行的 1 期扩展试验 (NCT03089879) 中,在初次接种系列之前抗体水平无法检测到的已接种过疫苗的个体接受了 1790GAHB 加强剂量 (1.5/25 µg OAg/蛋白质)。对照组是接种了一剂 1790GAHB 的未接种过疫苗的参与者。当前的分析使用针对检测人血清优化的高通量发光血清杀菌活性 (SBA) 检测法评估了从两项研究中收集的血清的功能性。在接种疫苗者中检测到了具有补体介导的杀菌活性的抗体,但在安慰剂接受者中未检测到。SBA 滴度随着 OAg 剂量的增加而增加,在初次接种至少 1.5/25 µg OAg/蛋白质后,反应持续长达六个月。加强剂量在大多数已接种过疫苗的参与者中诱导了 SBA 滴度的大幅增加。观察到 SBA 滴度与抗 S. sonnei LPS 血清免疫球蛋白 G 水平之间的相关性。结果表明,GMMA 是一种有前途的 OAg 递送系统,可用于产生功能性抗体反应和持久的免疫记忆。
1 美国国家标准与技术研究所 (NIST),美国马里兰州盖瑟斯堡 20899 2 特拉华大学,美国特拉华州纽瓦克 19716 3 克莱姆森大学,美国南卡罗来纳州克莱姆森 29634 4 马里兰大学,美国马里兰州帕克分校 20742 将离子限制在离子阱中有许多有趣的应用,包括精密光谱学、量子计量学以及强耦合单组分等离子体中的集体行为。在大多数情况下,单电荷离子或几次电离的物质是在离子阱内原位产生的。但是,某些应用需要专用的外部离子源。例如,将离子束注入线性射频 (RF) 阱中,形成以空间电荷为主的非中性等离子体,用于模拟强带电粒子束传播的实验,例如重离子聚变反应堆、散裂中子源和高能物理中的粒子束。强空间电荷效应使高电荷离子 (HCI) 的隔离更加复杂,该效应与电荷状态的平方成正比。在这项工作中,我们报告了在双曲线 RF 阱中捕获 ~500 Ne 10+ 离子。高电荷离子从 NIST 的电子束离子源/阱 (EBIS/T) 中提取,随后由 7 米长的光束线引导至离子阱装置;嵌套在静电光束线光学器件中的电荷质量分析仪用于选择要在 RF 阱中重新捕获的单个电荷状态 (Ne 10+)。我们讨论了实验优化,并将结果与计算机模拟进行了比较。实验捕获效率达到了 ~20%,在双曲线 RF 阱中捕获了 ~500 个 Ne 10+ 离子,与单元 Penning 阱中达到的捕获效率相当 [1]。RF 阱中可用的更大光学通道有利于改进光谱实验。由于 RF 驱动的微运动加热并且没有任何冷却机制,观察到的存储在 RF 阱中的 Ne 10+ 离子的存储寿命为 69 毫秒,短于单元 Penning 阱中相应的存储寿命。尽管如此,这对于各种光谱实验都很有用,包括许多电荷状态的原子状态寿命测量。探索了增加捕获离子数量和存储寿命的可能改进方法。参考文献
产品概述DOW的微电子硅胶粘合剂旨在满足微电子和可选的电子包装行业的关键要求,包括高纯度,耐水性,热和电气稳定性。该产品具有极高的应力松弛和高温稳定性,并且很好地粘附在各种底物材料和组件上,而无需底漆。它也适用于需要具有低模量的材料,无铅焊接温度(260°C)或其他需要高可靠性的应用。该产品是一种易于使用的单组分产品,在热固化反应过程中不会产生副产品。固化的产品表现出极好的电绝缘。 清洁底物表面以清洁底物的表面,并用诸如Dow Corning Brand OS液体,Naphtha,矿物精神或甲基乙基酮(MEK)等溶液清除油性污渍。建议在可能的情况下进行表面的光抛光,以达到由于粘附面积增加而获得稳定的粘附特性。最后,用溶剂擦拭表面有助于去除粘附于标准表面上左侧的残留物。根据贴材和周围组件的特性,其他清洁方法可能有效,因此请确定哪种方法最适合您的个人情况。 基本材料测试有多种类型的底物,底物的表面条件因一种而异,因此不可能提供对粘附条件和粘附强度的一般解释。拉伸粘附试验需要对粘附层的100%内聚力分解,以实现针对特定底物的最高粘附强度。根据确定凝聚力分解,可以确定粘合剂和靶标底物之间的兼容性以及粘附所需的加热时间。另外,可以使用凝聚力的确定来确认表面污染的存在,例如霉菌释放剂,油,油脂和氧化物涂层。 兼容性某些材料,化学物质,交联和增塑剂可能会导致添加粘合剂的固化抑制。典型的固化抑制剂包括有机素,其他有机金属化合物,含有器官蛋白催化剂,硫,多硫化物,多硫酮,其他含硫的材料,不饱和烃塑料塑料化合物和焊料磁通残留物。如果底物或材料可能会导致治疗抑制作用,我们建议您针对您的预期应用进行小规模的一致性测试。如果底物和固化产物之间的界面处有液体或未固定的部分,则其在底物上的使用是不兼容的,并且表示治愈抑制作用。 如果您需要去除DOW电子粘合剂以进行缺陷分析,则可修复性道琼斯水平的流体很有用。有关这些产品的更多信息,请联系Dow。 使用的预防措施:此数据表中不包括使用所需的安全信息。在使用之前,请仔细阅读安全数据表(SD)和容器标签,以获取有关安全使用以及身体和健康危害的信息。您可以通过访问网站Dow.com/ja-jp购买安全数据表(SD)。
如今,鉴于人类面临的主要问题,日益严重的环境污染和对可持续廉价能源的需求代表了重要的研究问题。因此,设计和开发能够集成到高效的环境处理和能源生产产品/技术中的先进材料是全世界不断研究的课题。在这种情况下,光催化材料被认为是主要用于水处理的有吸引力的候选材料,但也用于通过光电解水分解生产氢气。光催化技术利用光能作为驱动力,在光催化材料的存在下,通过矿化从(废)水中去除持久性有机污染物(例如染料、农药和药物)。具有光催化活性的材料种类繁多,例如半导体(金属氧化物、金属硫化物/硒化物等)、半导体基异质结(微/纳复合结构、二元或三元混合结构等)、钙钛矿、过渡金属尖晶石型混合氧化物、金属有机骨架(MOF)、水凝胶和废物衍生或模板材料。因此,本期主题主要指开发创新、先进和可操作的光催化技术,这些技术使用新的高效、环保、可持续和可重复使用的光催化材料。本期包括八篇文章,重点介绍先进的光催化材料在水处理和通过水分解反应制氢中的应用。以下是本期论文的简要摘要,考虑到光催化过程中使用的材料类型:金属氧化物(单组分、双组分或三组分混合结构)、钙钛矿和石墨相氮化碳(gC 3 N 4 )基半导体。总共八篇文章中,有三篇 [ 1 – 3 ] 重点介绍了 TiO 2 基光催化剂,因为 TiO 2 已被广泛研究,是一种具有相对较高的光催化活性和优异的化学稳定性的低成本环境友好型材料。在参考文献 [ 1 ] 中,使用刮刀技术在三种不同的基材上沉积 TiO 2 (Degussa P25) 薄膜:显微玻璃 (G)、掺杂氟的氧化锡 (FTO) 和铝 (Al)。在 UV-A、UV-B + C 和 VIS 辐照(七种场景)下,对两种污染物酒石黄 (Tr) 染料和啶虫脒 (Apd) 杀虫剂测试了样品的光催化性能,辐照时间为 8 小时。为了优化光催化效率,研究了几个参数(照射源、总辐照度值、光子通量、催化剂基材和污染物类型)的影响。结果表明,在导电(Al)基底上制备的样品,使用三个 UV-A 和一个 VIS 光源(13.5 W/m 2)的混合光源,可以获得更高的光催化效率(Tr 为 63.8%,Apd 为 82.3%)。在参考文献 [ 2 ] 中,作者报道了一种新型 Ba(II)/TiO 2 –MCM-41 复合材料,该复合材料使用掺杂 Ba 2+ 的 TiO 2 分散在 MCM-41 分子筛上。在紫外光照射(60 分钟)下,Ba(II)/TiO 2 –MCM-41 (91.7%) 在降解对硝基苯甲酸 (4 × 10 − 4 M) 时的光催化效率增强,这被认为是由于 Ba 2+ 离子和 MCM-41 的存在,这有助于降低带隙能量并促进 TiO 2 的轻松分散,从而形成一种表面积为
图 1.1. 天蓝色链霉菌线性基因组的表示。 ........................................................................... 2 图 1.2. 天蓝色链霉菌的发育生命周期 .............................................................................. 4 图 1.3. 来自链霉菌的抗生素的主要发现和日期。 ...................................................................... 11 图 1.4. 放线菌紫红素的生物合成。 ............................................................................................. 15 图 1.5. 普罗地金胺的生物合成。 ............................................................................................. 18 图 1.6. 参与调节天蓝色链霉菌次级代谢的双组分系统。 ............................................................................................. 22 图 1.7. 参与调节天蓝色链霉菌次级代谢的单组分和多组分系统。 ............................................................................................. 26 图 1.8. 激活次级代谢产物产生的遗传策略。 ............................................................................................. 31 图 1.9.激活次级代谢产物产生的合成策略。................................................................................................................ 33 图 1.10. 激活次级代谢产物产生的生态策略。...................................................................................................... 36 图 1.11. 激活次级代谢产物产生的化学策略。...................................................................................................... 38 图 2.1. ARC2 系列抑制脂肪酸生物合成途径中的 FabI (Craney 等,2012)。............................................................................................................................................. 43 图 2.2. ARC2 全面改变天蓝色链霉菌 M145 中的基因表达。............................................................................................. 45 图 3.1. 天蓝色链霉菌中涉及 AfsK/R/S 的信号转导途径的当前模型............................................................................................. 88 图 3.2. 响应 ARC2,P afsS - lux 和 P actII-ORF4 - lux 活性增加。 .................. 89 图 3.3. D afsR 和 D afsS 中的放线菌紫素生成受到影响 .............................................. 90 图 3.4. D afsK 中的放线菌紫素生成不受影响 ........................................................ 90 图 3.5. D afsR 和 D afsS 中的 ARC2 反应受到影响 ............................................................. 92 图 3.6. D afsK 中的 ARC2 反应不受影响 ............................................................................. 93 图 4.1. 天蓝色链霉菌基因组上的 afsK 、 afsR 和 afsS 基因的组织以及 AfsS 蛋白序列。 ............................................................................................................. 99 图 4.2. AfsS 是一种具有三个序列重复的保守蛋白。 ............................................................................. 100 图 4.3.AfsS 被预测为一种高度无序的蛋白质。 ........................................................................................... 101 图 4.4. AfsS 序列重复中的点突变损害了基础的放线菌素产生。 ......................................................................................................................... 102 图 4.5. D afsS[ermE *: afsS D31A ] 中的 ARC2 反应受到损害。 ............................................................................. 103 图 A1.1. 小家鼠 PkA 和结核分枝杆菌 PknB 的催化激酶结构域的一级序列比对 . ................................................................................................ 156 图 A1.2. 天蓝色链霉菌 M600 D SCO3820::apr 中的 ARC2 反应受到损害。 ......................................................................................................................... 160 图 A1.3. SCO6219 催化激酶结构域与天蓝色链霉菌的丝氨酸/苏氨酸激酶没有高度同源性。 ........................................................................................... 162 图 A1.4. AfsK、PkaG 和 SCO6219 中的蛋白质结构域预测摘要。 ............................................................................................. 167 图 A1.5. SCO3820 的缺失呈现天蓝色链霉菌 M145 的两种不同表型。 ........................................................................................................................... 168 图 A2.1. 委内瑞拉链霉菌基因组上的 afsR 和 afsS 直系同源物以及 AfsS Sv 蛋白序列的组织。 ........................................................................................... 183 图 A2.2. AfsS Sv 样蛋白在链霉菌中是保守的。 ........................................................................... 185 图 A2.3. AfsS Sv 被预测为一种无序蛋白质。................................................................ 186AfsK、PkaG 和 SCO6219 中的蛋白质结构域预测摘要。 ...................................................................................................................................... 167 图 A1.5. SCO3820 的缺失呈现了天蓝色链霉菌 M145 的两种不同表型。 ............................................................................................................................................. 168 图 A2.1. 委内瑞拉链霉菌基因组上的 afsR 和 afsS 直系同源物的组织以及 AfsS Sv 蛋白序列。 ............................................................................................................. 183 图 A2.2. AfsS Sv 样蛋白在链霉菌中是保守的。 ............................................................................................. 185 图 A2.3. AfsS Sv 被预测为无序蛋白。 ............................................................................................................. 186AfsK、PkaG 和 SCO6219 中的蛋白质结构域预测摘要。 ...................................................................................................................................... 167 图 A1.5. SCO3820 的缺失呈现了天蓝色链霉菌 M145 的两种不同表型。 ............................................................................................................................................. 168 图 A2.1. 委内瑞拉链霉菌基因组上的 afsR 和 afsS 直系同源物的组织以及 AfsS Sv 蛋白序列。 ............................................................................................................. 183 图 A2.2. AfsS Sv 样蛋白在链霉菌中是保守的。 ............................................................................................. 185 图 A2.3. AfsS Sv 被预测为无序蛋白。 ............................................................................................................. 186