叠加原理 – 相干性 – 时间相干性和空间相干性 – 光干涉的条件。菲涅尔双棱镜 – 光波长的测定 – 反射时相位的变化。由于反射和透射光(余弦定律)而导致的平面波在薄膜上的斜入射 – 薄膜的颜色 – 具有两个非平行反射表面的薄膜的干涉(楔形薄膜)。金属丝直径的测定,反射光中的牛顿环。迈克尔逊干涉仪,使用牛顿环和迈克尔逊干涉仪测定单色光的波长。
了解有机半导体在光照下的电荷传输的物理原理对于开发新型光电应用至关重要。我们研究了可见光谱中单色光对基于 2,8-二氟-5,11-双(三乙基硅乙炔基)蒽二噻吩的有机薄膜晶体管通道的影响。当晶体管通道被红光、绿光或蓝光照射时,测量到的电荷载流子比光子吸收产生的激子多,导致光子到电荷载流子的转换效率远大于 100%。我们使用一个模型来解释这一现象,该模型结合了空间电荷限制的光电荷和由于光生电子降低势垒而导致的源电极空穴注入增强。
全面测试 Gardner Denver 可进行维修厂无法进行的测试。磁通量和超声波检查可发现破裂或受压铸件,单色光分析可发现漏油,坐标测量机可检查 +/- .0001”,确保所有再制造的空气端符合工厂性能规格。保修 Gardner Denver 为每个再制造的空气端提供全新保修……自购买之日起 18 个月,自维修之日起 12 个月。Gardner Denver 再制造的空气端年复一年地提供无可置疑的品质。请致电 Gardner Denver 了解空气端更换计划的信息和授权经销商的名称。电话号码:800–245–4946 或传真:901–542–6159
摘要:模分复用(MDM)技术因其能够增加光子网络的链路容量而受到研究人员的广泛关注。尽管近年来已经展示了各种模式处理设备,但对于大规模多功能网络至关重要的多模处理设备的可重构性却很少得到开发。在本文中,我们首次提出并实验演示了一种用于片上光网络的非对称微赛道谐振器(MRR)的可扩展模式选择转换器。该装置由级联的MRR组成,能够根据需要将输入的单色光转换为输出波导中的任意支持模式。采用硅波导的热光效应来调整设备的工作状态。为了测试实用性,基于非对称微赛道谐振器(MRR)制作并实验演示了概念验证装置
摘要。小球藻已被广泛用于生物能源,环境保护,还原,食物,药物和其他领域。在本文中,近年来通过文献综述对小球藻的优化进行了全面分析。结果表明,在5500-7000LUX的光强度范围内,小球藻的生物量积累速率更快,但是小球藻的生长速率在极高的光强度范围内达到了限制的10000-14000LUX蓝色和绿光,对生物量和光合色素颜料的效应最大,对氯菌的积累;蓝色和绿光单色光培养模式的脂质产量最高。在蓝白色的光中添加绿光,红白色的浅色和白色绿色的光对小球藻的脂质积累有益。在24小时培养模式下,14L:10D的低频光周期通常是最佳方案。根据上述结论,光条件,复合光对小球藻的影响和最佳的低频光周期将是未来大型小球藻大规模培养的主要研究方向。
尽管大多数物理实验都是用独立粒子进行的,但纠缠粒子的集体性质揭示了量子世界最迷人和最意想不到的方面。埃尔温·薛定谔首先指出“纠缠不是量子力学的一种特性,而是量子力学的特征”。纠缠态粒子对行为的一个奇特之处在于,尽管每个单独的粒子都表现出固有的不确定性,但纠缠对的联合实体却不会表现出这种不确定性。例如,虽然单个粒子到达的时间可能完全随机,但纠缠对必须始终同时到达。此属性为进行绝对测量提供了独特的工具。我们的目标是探索纠缠的无数含义和重要性,并利用它来开发一种新型光学测量——量子光学计量学。自发参量起源的非线性过程中产生的孪生光子之间存在独特的非经典关联。这种孪生量子之间的非经典联系不会因孪生量子之间任意大的分离而减弱,即使它们位于光锥之外。过去二十年来,孪生态已被用于进行确定性的量子实验,并产生了违反直觉的结果,这些实验包括由爱因斯坦-波多尔斯基-罗森 (EPR) 悖论引起的实验,例如贝尔不等式的各种测试 [1-12],以及非局部色散抵消、纠缠光子诱导透明性和单色光纠缠光子光谱。这些孪生光束的出现使得人们无需借助于量子干涉仪就可以进行此类实验。
单色光或进入特定周期性培养基的物质波显示出尖锐的bragg散射到特定的角度。然而,随机干扰完美的晶格位置会导致布拉格峰之间的弥散散射。随着分散体的增加,弥散散射最终占主导地位,最后,布拉格峰消失了。弥散散射是结构化的,在介质中揭示了相关性。例如,用于在水中X射线散射[1,2],可见光在单分散聚苯乙烯珠的无序堆积中的散射[3,4],这对相关函数具有宽峰,具有特征长度尺度,这又在结构函数中产生宽峰。在无序培养基的研究中,布拉格峰与周期性结构有关[5,6]。但是,没有预期的是,在任何规模上没有完美顺序的随机介质可以产生尖锐的散射角度,但我们在这里报告了这样的情况。对于我们选择的潜力,空间自相关函数具有宽峰,因为原子对相关函数在水中,但散射角度仍然非常清晰。这很令人震惊;下面定义的随机电势中的散射就像是在周期性电势中的布拉格散射,而不是相关液体中的散射。最接近的类似物(尽管不是完美的类似物)是粉末衍射,许多随机定向的微晶被密切包装。下面定义的电势没有这样的“微晶”,但它具有bragg峰。但是,散射的时间演变与Fermi的黄金法则不兼容,如下所述。我们通过检查电势的傅立叶成分来计算散射矩阵元素或等效地来解释这一惊喜。我们考虑以下形式的随机电势
摘要:本研究的目标是定义一个通过无线电力传输为月球表面提供电力的月球轨道系统。为了满足月球基地的电力需求,需要使用放置在稳定轨道上的卫星群。该卫星群的每颗卫星都由太阳能电池阵列和电池组成,为电力传输系统供电。该系统由激光器组成,可将电力传输到月球表面的接收器。接收器是光子能量转换器,是针对激光单色光优化的光伏电池。这项工作的成果将通过研究不同的轨道涵盖系统的架构,特别是分析一些子系统,例如激光器、电池组和放置在月球地面上的接收器。这项研究考虑了两种不同的能源需求,因此考虑了两种不同的接收器位置:首先,在阿尔特弥斯任务着陆点的战略位置,即月球南极附近的沙克尔顿陨石坑;其次,在月球赤道上,为未来和新的探索做准备。目标是评估满足月球基地所需功率的可能配置,估计约为 100 kW。为此,分析了几种情况:三种不同的轨道,一种是极地轨道,一种是冰冻轨道,一种是赤道轨道(地球-月球远距离逆行轨道),卫星数量不同,接收器的传输锥角也不同。本文的主要目的是对上述系统进行全面的可行性研究,特别强调选定的子系统。虽然简要介绍和讨论了热控制、激光瞄准和姿态控制子系统,但还需要进一步研究以深入研究这些领域,并更全面地了解它们在系统中的实施和性能。
通过推杆将温度传感器连接到传感器。该测试的精度低于干涉测量法,并且该测试通常适用于 CTE 高于 5 × 10 –6 /K (2.8 × 10 –6 /°F) 的材料,温度范围为 –180 至 900 °C (–290 至 1650 °F)。推杆可以是玻璃硅类型、高纯度氧化铝类型或各向同性石墨类型。氧化铝系统可将温度范围扩展到 1600 °C (2900 °F),石墨系统可将温度范围扩展到 2500 °C (4500 °F)。ASTM 测试方法 E 228(参考文献 2)涵盖使用玻璃硅推杆或管膨胀仪测定刚性固体材料的线性热膨胀。干涉测量法。使用光学干涉技术,样品端部的位移是根据单色光的波长数来测量的。精度明显高于膨胀仪,但由于该技术依赖于样品表面的光反射率,因此在 700 °C (1290 °F) 以上时,干涉测量法的使用并不多。ASTM 测试方法 E 289(参考文献 3)提供了一种使用干涉法测量刚性固体线性热膨胀的标准方法,该方法适用于 –150 至 700 °C(–240 至 1290 °F)的温度,更适用于 CTE 较低或为负值且范围小于 5 × 10 –6 /K(2.8 × 10 –6 /°F)的材料,或只有有限长度厚度的其他高膨胀系数材料。热机械分析测量由热机械分析仪进行,该分析仪由试样支架和探头组成,探头将长度变化传输到传感器,传感器将探头的运动转换为电信号。该设备还包括一个用于均匀加热的炉子、一个温度传感元件、卡尺和一个记录结果的工具。ASTM 测试方法 E 831(参考文献 4)描述了通过热机械分析对固体材料进行线性热膨胀的标准测试方法。该方法的 CTE 下限为 5 × 10 –6 /K (2.8 × 10 –6 / ° F),但可以在较低或负膨胀水平下使用,但准确度和精度会降低。适用温度范围为 –120