注意:如果携带,将计入 4 套最低 ACU OCP 完整制服(FRACU、Patagonia、Crye 等均获授权)不包括 V 型上衣、战斗衬衫等。游骑兵学校装箱单 - 可选物品
由于飓风海伦对北卡罗来纳州西部地区造成的破坏,静脉输液袋的主要供应商之一最近关闭了其业务。与此同时,预计严重的供应链中断和静脉输液短缺将影响许多医院。为此,有效利用现有的静脉输液供应并将其保留用于最急需的病例非常重要。重要的是要考虑到大多数轻度或中度脱水或体液耗尽的儿童都可以通过口服补液来治疗。因此,静脉输液应保留在儿童无法通过口服补液(无论是意识清醒还是胃肠系统功能失调)的情况下。一些机构已经制定了临时策略来解决静脉输液基础短缺的问题。以下是帮助医院节省洛杉矶县有限静脉输液供应的指南和策略的示例。
手稿版本:作者接受的手稿包装中呈现的版本是作者接受的手稿,可能与已发布的版本或记录的版本有所不同。持续的包裹URL:http://wrap.warwick.ac.uk/162907如何引用:有关最新的书目引用信息,请参阅发布版本。版权所有和重复使用:沃里克研究档案门户(WARAP)使沃里克大学的研究人员在以下条件下可用开放访问权限。版权所有©以及此处介绍的论文版本的所有道德权利属于单个作者和/或其他版权所有者。在合理且可行的范围内,已在可用的情况下检查了包装中可用的材料是否有资格。未经事先许可或收费,可以将完整项目的副本用于个人研究或研究,教育或非营利目的。前提是作者,标题和完整的书目细节被认为是针对原始元数据页面提供的超链接和/或URL,并且内容不会以任何方式更改。发布者的声明:请参阅“存储库”页面,发布者的语句部分,以获取更多信息。有关更多信息,请通过以下网络与WARP团队联系:wrap@warwick.ac.uk。
磁性 skyrmion 是具有类粒子特性的拓扑非平凡自旋配置。早期研究主要集中于拓扑电荷 Q = − 1 的特定类型的 skyrmion。然而,二维手性磁体的理论分析已经预测了 skyrmion 袋的存在——具有任意正或负拓扑电荷的孤子。虽然这种自旋结构是亚稳态,但最近的实验观察证实了孤立 skyrmion 袋在有限范围的施加磁场中的稳定性。这里利用 Lorentz 透射电子显微镜展示了 B20 型 FeGe 薄板中 skyrmion 袋的非凡稳定性。特别是,结果表明,嵌入 skyrmion 晶格中的 skyrmion 袋即使在零或反转的外部磁场中也能保持稳定。提供了一种用于成核此类嵌入式 skyrmion 袋的强大协议。结果与微磁模拟完全吻合,并建立了立方手性磁体薄板作为探索宽谱拓扑磁孤子的有力平台。
nustl管理紧急响应者(SAVER®)计划的系统评估和验证,该计划提供了有关市售设备的信息,以帮助响应组织进行设备选择和采购。Saver知识产品提供有关DHS授权设备清单(AEL)中列出类别的设备的信息,主要关注响应者社区的两个主要问题:“有哪些设备可用?”和“它如何表现?” Saver计划与响应者合作,进行客观,与从业者相关的,以操作为导向的评估以及对市售紧急响应设备的验证。拥有正确的工具为响应者和服务者提供更安全的工作环境,为他们服务的人提供了更安全的社区。
摘要一种新型技术,它克服了手动劳动的困难,以提高大规模食品存储设施的生产率。特别是强调米袋,这种创造性的方法旨在无缝取代人类互动,例如采摘,存储,移动和监视食物袋。该系统采用一种集成方法,其中包括精密握把,剪刀升降机,笛卡尔机器人,自动驾驶指导车辆(AGV)和先进的人工智能驱动控制系统。尤其是,称为同时定位和映射(SLAM)的技术在保证系统的平稳运行中起着至关重要的作用。虽然笛卡尔机器人精确地执行了复杂的作业,但来自AGV的自主移动性可以在存储空间内有效而准确地移动。剪刀升降机增加了系统在管理不同存储布置方面的灵活性。米饭可以仔细地处理,并且可以通过精确的抓手来控制。人工智能算法由总体控制系统采用,以促进各种成分的平稳协调。结合了这些尖端技术,该系统不仅简化了操作,而且还大大降低了对手动劳动的需求,为管理食品存储的更有效,更尖端的方法打开了大门。关键字:自主移动性,大满贯,精密抓地力,剪刀升降机,笛卡尔机器人,AGV和简化操作。在印度的研究中,水稻行业对于维持经济稳定和粮食安全至关重要。在这种情况下,有效的米袋处理至关重要,因为它直接影响分布和供应链。此摘要涵盖了用于稻袋堆叠和堆叠的自动托盘制度系统的创建和应用。利用尖端的机器人技术和自动化技术,该系统优化了处理程序,提高效率并降低了对人工劳动的依赖。印度的大多数稻米厂和存储设施目前都手工处理米袋,这是一项劳动力的运营。除了降低运营效率外,这种劳动密集型方法还
免责声明。此处发布的信息(“信息”)是基于可以认为可靠的来源,通常是制造商,但是提供了“原样”,而无需保证正确性或完整性。信息仅是指示性的,并且可以随时更改而无需注意。没有任何权利可以基于信息。此信息的供应商或聚合器对(Web)页面和其他文档(包括其信息)的内容不承担任何责任。信息的发布者对链接此信息或从此信息链接到的第三方网站的内容不承担任何责任。作为信息的用户,您完全负责此信息的选择和使用。您无权传输,复制或以其他方式乘以或分发信息。您有义务遵循有关信息的使用方向。仅适用荷兰法律。关于本网站上的价格和股票数据,发布者遵循了许多起点,这些起点不一定与您的私人或商业情况有关。因此,价格和股票数据仅指示,并且会发生变化。您对使用和应用此信息的方式负责。作为包含此信息的信息,网站或文档的用户,您将遵守标准的公平用途,包括避免垃圾邮件,撕裂,智力侵犯智力 - 违反隐私权和任何其他非法活动。
为了最大程度地减少与强制施用相关的纵向成像和潜在风险的辐射暴露,采取了二维(2D)非对比度轴向轴向单板CT CT,而不是在临床实践中常见的三维(3D)体积CT。然而,很难在纵向成像中找到相同的横截面位置,因此在不同年内捕获的器官和组织存在实质性变化,如图1。在2D腹部切片中扫描的器官和组织与身体成分措施密切相关。因此,增加的位置差异可以准确地分析身体组成的挑战。尽管有这个问题,但尚未提出任何方法来解决2D切片中位置差异的问题。我们的目标是减少位置方差在人体组成分析中的影响,以促进更精确的纵向解释。一个主要的挑战是,在不同年内进行的扫描之间的距离是未知的,因为该切片可以在任何腹部区域进行。图像注册是在其他情况下用于纠正姿势或位置错误的常用技术。但是,这种方法不适合解决2D采集中的平面运动,其中一种扫描中出现的组织/器官可能不会出现在另一种扫描中。基于参考。13,图像协调方法分为两个主要组:深度学习和统计方法。值得注意的统计方法包括战斗14及其变体,15-17 Convbat,18和贝叶斯因子回归。19然而,与生成模型不同,统计方法通常缺乏对我们方案至关重要的生成能力。基于深度学习的现代生成模型最近在生成和重建高质量和现实的图像方面取得了重大成功。20 - 26生成建模的基本概念是训练生成模型以学习分布,以便生成的样品 ^ x〜pdð ^xÞ来自与训练数据分布x〜pdðxÞ的分布相同。27通过学习输入和目标切片之间的联合分布,这些模型可以有效地解决注册的局限性。变化自动编码器(VAE),28是一种生成模型,由编码器和解码器组成。编码器将输入编码为可解释的潜在分布,解码器将潜在分布的样本解码为新数据。生成对抗网络(GAN)20是另一种类型的生成模型,其中包含两个子模型,一个生成新数据的生成器模型和一个区分实际图像和生成图像的歧视器。通过玩这个两人Min-Max游戏,Gans可以生成逼真的图像。Vaegan 29将GAN纳入VAE框架中,以创建更好的合成图像。通过使用歧视器来区分真实图像和生成的图像,Vaegan可以比传统的VAE模型产生更真实和高质量的图像。但是,原始的vaes和gan遭受了缺乏对产生图像的控制的局限性。有条件的GAN(CGAN)30和CONDINATION VAE(CVAE)31解决了此问题,该问题允许生成具有条件的特定图像,从而对生成的输出提供了更多控制。但是,这些条件方法中的大多数都需要特定的目标信息,例如目标类,语义图或热图,在测试阶段32作为条件,这在我们的情况下是不可行的,因为我们没有任何可用的直接目标信息。
微生物驱动全球碳循环1,并可以与宿主生物体建立象征关系,从而影响其健康,衰老和行为2 - 6。微生物种群通过改变可用的代谢物池和专门的小分子7、8的产生与不同的生态系统相互作用。这些群落的巨大遗传潜力被人相关的微型iSms举例说明,该微生物ISM的编码是人类基因组9、10的大约100倍。然而,这种代谢潜力在现代的未纳入代谢组学实验中仍未被反射,其中通常<1%的注释分子可以归类为微生物。这个问题特别影响质谱(MS)基于非靶向代谢组学,这是一种通过微生物11所产生或修饰的分子11的常见技术,该技术在复杂生物学样品的光谱注释中著名地挣扎。这是因为大多数光谱参考文献都偏向于原代代谢产物,药物或工业化学品的市售或以其他方式的标准。即使在注释代谢物时,也需要进行广泛的文献搜索,以了解这些分子是否具有微生物起源并识别各自的微生物生产者。公共数据基础,例如Kegg 12,Mimedb 13,Npatlas 14和Lotus 15,可以帮助进行这种解释,但它们大部分限于已建立的,很大程度上基因组所涉及的代谢模型或完全表征和发行的分子结构。此外,虽然旨在从机械上开发了旨在询问肠道微生物组的靶向代谢组学努力16,但它们仅着眼于相对较少的商业可用的微生物分子。因此,尽管MS参考文库不断扩大,但大多数微生物化学空间仍然未知。为了填补这一空白,我们已经开发了Microbemasst(https://masst.gnps2.org/microbemasst/),这是一种利用的搜索工具