radiomanual.info › Surplus_Civil PDF 2022年3月21日 — 2022年3月21日 可靠性... 和旋翼 28 伏飞机。数字频率合成器和自动... 安装在固定翼和旋翼飞机中。
双边带 DVOR 单边带或双边带 25 W 至 >100 W 可调节,步长为 0.1 W 108 至 117.95 MHz 50 KHz 频道 ± 5ppm 通过合成器进行数字编程 ± 0.5º ± 180º,步长为 0.01º <-70 dBc 通常为 1 + 48 个阿尔福德环路 水平 完整的本地和远程指示 是 完整的系统 / LRU 监控 以太网 / RS-232 和 RS-485 MTBF > 10,000 小时(单边带) MTBO > 20,000 小时(双边带) MTTR < 30 米(通常为 15 米) 600 VA(单边带) 750 VA(热待机) 一个 19 英寸标准机架 (33u):600 x 600 x 1467 毫米(宽 x 深 x 高)
我们广泛的高功率产品组合使广播发射机设计人员能够选择最佳解决方案,能够满足甚至超过任何所需功率水平、调制类型和频率范围内最严格的性能要求。卓越的效率和增益几乎涵盖了所有广播发射机应用,包括模拟电视、DVB-T、ISDB-T 和 ATSC 数字电视以及 AM、单边带、FM、HD 和 DAB 无线电应用。
AN/VRC-100 – HF 地面/便携式通信系统,为航空指挥官提供可靠的语音和数据通信,以及增强的态势感知能力,以支持配备 AN/ARC-220 的飞机的地面支援。自动接收和翻译飞机位置报告,并与军用通用作战图网络连接,以实现完整的战场态势感知。特点:重型便携式外壳,配有可用的车载支架、单边带、模拟语音、MIL-STD-188-141B ALE、ALE 链接保护、MIL-STD-188-110B 数据调制解调器、兼容 KY-100 加密、自动位置报告消息传递、最大功率输出 175 W pep(100 W 平均)未来:基于 AN/ARC-220 的现代化计划,下一代 VRC-100 将包括 WBHF 高速数据和 4G ALE,并提供嵌入式加密和数字语音选项
网络定理、网络图、节点和网格分析。时域和频域响应。镜像阻抗和无源滤波器。双端口网络参数。传递函数、信号表示。电路分析的状态变量法、交流电路分析、瞬态分析。逻辑系列、触发器、门、布尔代数和最小化技术、多振荡器和时钟电路、计数器环、波纹。同步、异步、上下移位寄存器、多路复用器和多路分解器、算术电路、存储器、A/D 和 D/A 转换器。调制指数、频谱、AM 生成(平衡调制器、集电极调制器)、幅度解调(二极管检测器其他形式的 AM:双边带抑制载波、DSBSC 生成(平衡调制器)、单边带抑制载波、SSBSC 生成和相位调制、调制指数。
摘要:提出了一种由晶体振荡器和自由运行介质谐振器振荡器 (DRO) 驱动的锁相环 (PLL) 级联。为了最大限度地降低相位噪声、杂散音和抖动,使用较低 GHz 范围内的可编程 PLL1 来驱动具有固定倍频因子的毫米波 (mmW) PLL2。相位噪声分析得出两个 PLL 的两个最佳带宽,以使级联的输出抖动最低。通过分频 PLL1 的输出频率并通过由 DRO 驱动的单边带 (SSB) 混频器对其进行上变频,可以进一步降低 PLL1 中的相位噪声和杂散音 (杂散)。通过将 SSB 混频器纳入 PLL1 的反馈环路中,可以避免手动调整 DRO,并且可以采用低噪声自由运行 DRO。本文介绍了 SiGe BiCMOS 技术中的一种示例设计。
高频 (HF) 通信,范围从 3 MHz 到 30 MHz,采用单边带、抑制载波调制,带宽约为 2.5 kHz,通常发射功率为几百瓦。但是,HF 传播会随频率、天气、一天中的时间和电离层条件而变化。甚高频 (VHF) 通信跨越两个不同的频段:30 MHz 至 88 MHz 专供军事用户使用,118 MHz 至 156 MHz 供民用和军用用户使用,标准双边带 AM 调制,发射功率为 40 dBm 至 45 dBm。超高频 (UHF) 通信包括 VHF 和 UHF,工作频率为 225 MHz 至 400 MHz。FM 调制方案采用 40 dBm 至 50 dBm 的发射功率,AM 调制方案采用 40 dBm 至 44 dBm 的发射功率。该频段通常被军事用户用于各种脉冲、跳频和电子对抗措施 (ECCM),例如抗干扰。
微波光子信号产生技术因其在宽带无线接入网、传感器网络、雷达、卫星通信、仪器仪表等领域的潜在应用而受到广泛关注。产生微波光子信号的技术可分为直接调制、光外差技术、外部调制、锁模半导体激光器、光电振荡器和一周期(P1)振荡[1]-[6]。采用外部光注入的半导体激光器可以表现出各种动力学状态,例如稳定锁定、P1振荡、二周期振荡、准周期振荡和混沌涨落。其中,P1动力学发生在稳定锁定被打破并且系统开始经历霍普夫分岔[7]时,其中会产生两个主频率,一个来自光注入,另一个是红移的腔频率。显然,利用P1动力学中两个主频率的拍频可以产生微波光子信号。与其他技术相比,基于 P1 振荡的微波光子信号产生具有许多优势,例如接近单边带 (SSB) 频谱、低成本、全光学元件配置以及远离其弛豫谐振频率的微波频率可广泛调谐 [8],[9]。基于 P1 振荡的微波光子信号产生主要在以下几个方面进行研究:
摘要 随着扩展成为大规模量子 (LSQ) 计算的关键问题,硬件控制系统的资源成本将变得越来越高。本文介绍了一种适用于自旋量子位的信号生成紧凑型直接数字合成 (DDS) 架构,该架构在波形精度和同步通道数量方面是可扩展的。该架构可以以 5 GS/s 的速度产生斜坡、频率梳和任意波形生成 (AWG) 的可编程组合,最坏情况下的数字反馈延迟为 76.8 ns。基于 FPGA 的系统具有高度可配置性,并利用比特流切换来实现可扩展校准所需的高灵活性。该架构还提供 GHz 速率多路复用 I/Q 单边带 (SSB) 调制,用于可扩展反射测量。该架构已在 Xilinx ZCU111 FPGA 上的硬件中得到验证,展示了复杂信号的混合以及多路复用控制和测量的频率梳生成的质量。这种设计的主要优势在于提高了数模转换器 (DAC) 频率斜坡的控制能力,与现有的基于 AWG 的架构相比,内存需求降低了几个数量级。单通道硬件非常紧凑,默认配置下,一个 DAC 通道仅占用 2% 的 ZCU111 逻辑资源,为集成反馈、校准和量子误差校正 (QEC) 留下了大量电路资源。