在认知神经科学领域,功能性近红外光谱 (fNIRS) 已成为非侵入性探测伴随神经活动的血流动力学反应的重要工具。该技术使研究人员能够通过头骨观察大脑活动,从而促进认知功能和神经发育过程的研究(Boas 等人,2014)。尽管 fNIRS 具有巨大潜力,但由于商业系统的高成本,它无法融入更广泛的研究实践,只能在资金充足的实验室使用(Pinti 等人,2018)。这种可用性受限给数据的验证和可重复性带来了挑战,阻碍了更广泛人群使用 fNIRS 技术。因此,很难将研究结果扩展到这些人群进行验证。
摘要:认知健康的声音偏差称为轻度认知障碍(MCI),尽早监测它以防止痴呆症,阿尔茨海默氏病(AD)和帕金森氏病(PD)等复杂疾病。传统上,使用蒙特利尔认知评估(MOCA)对MCI严重性进行了手动评分来监测。在这项研究中,我们提出了一种新的MCI严重性监测算法,并通过自动产生与MOCA评分等效的严重程度得分来回归分析单通道电 - 摄影(EEG)数据的提取特征。我们评估了用于算法开发的多试验和单轨分析。进行多试验分析,从与突出的事件相关电位(ERP)点和相应的时域特征中提取了590个特征,我们利用Lasso回归技术选择了最佳功能集。经典回归技术中使用了13个最佳特征:多元回归(MR),集合回归(ER),支持向量回归(SVR)和Ridge回归(RR)。对ER的最佳结果是1.6的RMSE和剩余分析。在单审分析中,我们从每个试验中提取了一个时间 - 频图图像,并将其作为对构建的卷积深神经网络(CNN)的输入。这种深CNN模型的RMSE为2.76。据我们所知,这是从单渠道脑电图数据中使用多试和单个数据生成与MOCA相当于MOCA的MCI严重程度的自动分数。
摘要 —本文提出了 LightSleepNet——一种基于轻量级 1-d 卷积神经网络 (CNN) 的个性化实时睡眠分期架构,可在硬件资源有限的各种移动平台上实现。所提出的架构仅需要输入 30 秒单通道 EEG 信号即可进行分类。使用由组 1-d 卷积组成的两个残差块代替传统的卷积层来消除 CNN 中的冗余。在每个卷积层中插入通道混洗以提高准确性。为了避免过度拟合训练集,使用全局平均池化 (GAP) 层替换全连接层,这进一步显著减少了模型参数的总数。提出了一种结合自适应批量归一化 (AdaBN) 和梯度重新加权的个性化算法,用于无监督域自适应。易于转移到新受试者的示例具有更高的优先级,并且该算法可以针对新受试者进行个性化而无需重新训练。实验结果表明,仅需 4576 百万次每秒浮点运算 (MFLOP) 计算和 43.08 K 个参数,就能达到 83.8% 的最佳总体准确率。
当同步整流管完全开启后, VDS 两端压降完全跟 随次级电流 Is 。随着次级续流电流的减小 VDS 电压升 高,当 VDS 电压增大到 -30mV 时, Gate 驱动电路的 上管供电被关断 , 驱动电压随内部电阻及漏电流开始缓 慢降低;当 VDS 电压增大到 -20mV 时, Gate 驱动电 压会被钳位在 3.3V 左右。如果 VDS 电压增大到 -1mV 时, WS2260C 会在 25ns 的时间内快速将 GATE 电压 拉到 0V 。同时,关断屏蔽时间开始计时,此期间 GATE 保持低电平。直到 VDS 电压大于 2V ,退出关断屏蔽 计时。
确定量子信道的容量是量子信息论中的一个基本问题。尽管有严格的编码定理来量化跨量子信道的信息流,但由于超加性效应,人们对其容量的理解甚少。研究这些现象对于深化我们对量子信息的理解非常重要,然而简单明了的超加性信道的例子却很少。在这里,我们研究了一类称为鸭嘴兽信道的信道。其最简单的成员是三元组信道,当与多种量子比特信道联合使用时,显示出相干信息的超加性。高维家族成员与擦除信道一起使用时表现出量子容量的超加性。受配套论文 [ 1 ] 中提出的“自旋对准猜想”的影响,我们关于量子容量超加性的结果扩展到了低维信道以及更大的参数范围。特别是,超加性发生在两个弱加性信道之间,每个信道本身都具有很大的容量,这与之前的结果形成了鲜明的对比。值得注意的是,单一、新颖的传输策略在所有示例中都实现了超可加性。我们的结果表明,超可加性比以前想象的要普遍得多。它可以发生在各种各样的通道中,即使两个参与通道都具有很大的量子容量。
Queiroz,Carlos Magno Medeiros,1971 - 单通道方法过滤受面部肌电图严重污染的脑电信号 [电子资源] / Carlos Magno Medeiros Queiroz。 - 2022 年。主管:Adriano de Oliveira Andrade。论文(博士) - 乌贝兰迪亚联邦大学,电气工程研究生课程。访问方式:互联网。可从以下网址获取:http://doi.org/10.14393/ufu.te.2023.8032 包括参考书目。包括插图。 1. 电气工程。 I. 安德拉德,阿德里亚诺·德奥利维拉,1975-,(东方)。二.乌贝兰迪亚联邦大学。电气工程研究生课程。三标题。 CDU:621.3 André Carlos Francisco 图书管理员 - CRB-6/3408
如图1 所示,要使TM1830 工作在恒流状态下,芯片OUT 引脚上电压应大于2.2V,即芯片的2、3 脚之间的电压应达到2.2V 以上。在应用时,电源串接LED 灯后加在OUT 引脚上的电压建议在3.0V 左右。 如果芯片持续工作在额定恒流状态下,TM1830-2 和TM1830-3 的OUT 引脚电压应分别在12.0V 和8.0V 以内为宜。
脑机接口 (BMI) 旨在建立生物神经系统与外部机器之间的直接通信通路 [1, 2]。不同类型的神经信号已在各种 BMI 应用中得到展示。脑电图 (EEG) 是 BMI 场景中最常见的电生理信号之一,例如注意力评估 [3]、运动想象 [4]、睡眠分期 [5] 和癫痫发作检测 [6]。然而,EEG 记录过程很容易因无线传输中的数据包丢失、受试者的意外移动或电极接触不良而受到干扰,从而导致信号不完整。一些文献中提出了张量完成方法 (TCM),通过将记录的 EEG 视为多通道张量来执行 EEG 完成 [7–10]。[9] 证明同时张量分解和完成 (STDC) 可以在几种 TCM 中实现更好、更稳健的性能。TCM 家族可以发现多通道信号的低秩表示,可进一步用于信号恢复。然而,TCM 家族依赖于多个脑电图通道,这对于单通道脑电图记录不起作用。序列到序列神经网络是脑电图补全的另一种解决方案。[11] 使用门层自动编码器 (GLAE) 将深度学习引入该领域。GLAE 在普通自动编码器之前添加了一个切换层。切换层在训练期间屏蔽了几个输入点。该模型学会了根据未屏蔽的点来补全屏蔽的点。GLAE 在两个稳态视觉诱发电位 (SSVEP) 脑电图上实现了 0.02 到 0.05 的 RMSE 水平
摘要:脑电图 (EEG) 信号很容易受到肌肉伪影的污染,这可能导致脑机接口 (BCI) 系统以及各种医疗诊断的错误解读。本文的主要目标是在不扭曲 EEG 所含信息的情况下去除肌肉伪影。首次提出了一种新的多阶段 EEG 去噪方法,其中小波包分解 (WPD) 与改进的非局部均值 (NLM) 算法相结合。首先,通过预训练的分类器识别伪影 EEG 信号。接下来,将识别出的 EEG 信号分解为小波系数,并通过改进的 NLM 滤波器进行校正。最后,通过逆 WPD 从校正后的小波系数重建无伪影的 EEG。为了优化滤波器参数,本文首次使用了两种元启发式算法。所提出的系统首先在模拟脑电图数据上进行验证,然后在真实脑电图数据上进行测试。所提出的方法在真实脑电图数据上实现了 2.9684 ± 0.7045 的平均互信息 (MI)。结果表明,所提出的系统优于最近开发的具有更高平均 MI 的去噪技术,这表明所提出的方法在重建质量方面更佳并且是全自动的。
当人们想要进行想象 (IMI) 或真实运动 (RMI) 时,脑电图 (EEG) 中会引发低频准备电位 (RP)。虽然大多数脑机接口 (BCI) 应用中面临的挑战是从给定的 EEG 试验中对不同肢体的 RP 进行分类,但本研究的目的是从整个单通道 EEG 信号中快速自动检测 RP。所提出的算法有两个阈值块,第一个阈值块基于非线性 Teager-Kaiser 能量算子 (TEO),第二个阈值块以 RP 波形的形态特性为约束。性能受到瞬变和伪影导致的突然能量变化的强烈影响。作为主要贡献,所提出的非线性凸优化算法通过提供快速阈值机制,实现将瞬变与低频分量分离。将所提出的方法应用于 Physionet RMI 数据集、BCI 竞赛 IV-1 IMI 数据集和我们自己的健康受试者左手运动数据集,可获得 76.5 ± 8.27%、83.85 ± 11.4% 和 81.1 ± 5.23% 的真阳性率 (TPR),2.4 ± 1.07、1.4 ± 0.7 和 1.6 ± 0.69 的 FPs/min 数量,以及 85.4 ± 3.83%、90 ± 3.56% 和 91.2 ± 2.04% 的准确率。我们的自动 RP 检测器的运动开始检测延迟为 -384.9 ± 296.5 毫秒。总之,所提出的方法优于使用低至单通道 EEG 的最先进的技术,使其适用于中风瘫痪患者的实时神经康复。