fi g u r e 1表观遗传分析可以产生除其他OMIC方法外的生物学见解。(a)健康与患病大脑中的小胶质细胞表观遗传态的比较分析,可以构建转录因子(TF)和基因调节网络,并可以绘制与疾病相关的单核苷酸多态性(SNP)的映射到小胶质细胞亚型及其功能注释。(b)表观遗传特征还可以用来揭示小胶质细胞的当前免疫反应,并告知如何通过短期(即在急性炎症期间)和长期通过表观遗传水平的小胶质细胞整合免疫信号。长期重编程被称为“先天免疫记忆”,在首次侮辱之后是难治阶段,其特征在于持续的表观遗传修饰,随后的刺激会触发改性的小胶质细胞反应,该反应是对初始表性刺激的先前表观遗传重编程的结果。
纠缠蒸馏可以将嘈杂的量子态转换为单态,进而可用于各种量子技术任务,例如量子隐形传态和量子密钥分发。纠缠稀释是逆过程:单态转换为具有较少纠缠的量子态。虽然蒸馏的用处显而易见,但纠缠稀释的实际应用却不那么明显。在这里,我们表明纠缠稀释可以提高共享量子态对局部噪声的弹性。即使将单态稀释为具有任意小纠缠的状态,也可以观察到增加的弹性。我们将分析扩展到其他量子资源理论,例如量子相干性、量子热力学和纯度。对于这些资源理论,我们证明将纯量子态稀释为嘈杂量子态有利于保护系统免受噪声影响。我们的结果证明了量子资源稀释的用处,并为量子信息处理中嘈杂量子态优于纯态提供了一个罕见的例子。
硼-二吡咯亚甲基 (BODIPY) 染料由于易于合成、模块化、可调的光物理和电化学性质、稳定性以及对可见光的强吸收而被广泛应用于光驱动过程。 [1] 根据 BODIPY 核心结构的取代模式,单线态和三线态激发态可以在光子吸收时优先填充,从而产生不同的应用。例如,BODIPY 的荧光特性已在生命科学中被用于生物传感应用或成像活动。 [2] 获取 BODIPY 染料的长寿命三线态可应用于光动力疗法、通过三线态-三线态湮没的光子上转换或光催化。 [3] 将重原子(即 Br、I、Au、Pt、Ru)共价连接到 BODIPY 核心结构是一种常用方法,通过自旋轨道耦合 (SOC) 诱导的系统间窜改来促进三线态的布居。 [4] 过去十年来,这些含重原子染料在光氧化还原催化和能量转移过程中的应用在文献中蓬勃发展。[5] 例如,含卤素的 BODIPY 催化剂已用于光氧化还原有机反应,如 N 取代四氢异喹啉的功能化、[6] 呋喃的芳基化和
[演讲重点] - 已知修复细胞DNA损伤的方法根据损伤类型而不同,但严重到足以导致细胞死亡的DNA损伤具有什么结构,又是如何修复的,目前尚不清楚。 ・利用我们独特的纳米级观察技术,我们首次确定了DNA损伤的修复程度。 如果能够开发出一种药物来阻断这种修复过程,就有可能更有效地摧毁重离子放射疗法难以杀死的癌细胞。
具有长寿命相干性的量子态对于量子计算、模拟和计量学至关重要。在单重态振转基态中制备的超冷分子的核自旋态是编码和存储量子信息的绝佳候选。然而,重要的是要了解这些量子比特的所有退相干源,然后消除它们,以达到尽可能长的相干时间。在这里,我们使用高分辨率拉姆齐光谱法全面表征了光学捕获的 RbCs 分子超冷气体中存储量子比特退相干的主要机制。在详细了解分子超精细结构的指导下,我们将磁场调整到一对超精细状态具有相同磁矩的位置。这些状态形成一个量子比特,它对磁场的变化不敏感。我们的实验揭示了状态之间微妙的微分张量光移,这是由旋转状态的弱混合引起的。我们演示了如何通过将线性偏振陷阱光和施加的磁场之间的角度设置为魔角反余弦(1 / √
完全受挫阶梯——准一维几何受挫自旋一半海森堡模型——不可积,阶梯横档上的局部守恒量为局部守恒量,导致希尔伯特空间局部分裂为横档上由单重态和三重态组成的区段。我们通过纠缠熵和非时序相关器 (OTOC) 探索该模型的远离平衡态动力学。纠缠熵的后淬灭动力学非常异常,因为它显示出从短连接三重态块中出现的清晰的无阻尼复兴。我们发现熵的最大值来自于这样一幅图像,其中不同碎片之间的相干性与每个碎片内的完美热化共存。这意味着本征态热化假设在所有足够大的希尔伯特空间碎片中都成立。 OTOC 显示由短耦合碎片引起的短距离振荡,这些振荡在较长距离处变得不相干,并且由于与碎片相关的新出现的长度尺度而导致亚弹道扩散和长距离指数衰减。
简介 美国是一个北极国家。因此,北极安全环境直接有助于国土防御,对我们的国家利益至关重要。2019 年,国防部 (DoD) 发布了最新的北极战略,目标是将北极建设成“一个安全稳定的地区,美国的国家利益在这里得到保障,美国国土得到保卫,各国合作应对共同挑战。”国防部指示该部门保卫国土,竞争以维持有利的地区力量平衡,并确保共同领域保持自由和开放。这项陆军战略以这些目标为基础,确定了陆军将如何确保陆地优势并继续作为联合部队的一部分完成任务。为了做到这一点,陆军必须了解北极在保卫国土方面的作用、大国竞争背景下复杂的地缘政治格局以及加速的环境变化如何影响未来的行动。有了这种理解,陆军将能够生成、预测和
摘要:城市通常被描述为经济增长的引擎。我们从量化角度评估了这一说法。我们关注两种机制:静态集聚效应,它使大城市的生产更有效率;动态效应,即城市规模影响发明的生产率,而发明的生产率又决定了整个国家技术进步的速度。使用来自文献和 1900 年以来 MSA 级专利和人口数据对这些影响的估计值,我们想知道如果从 1900 年开始城市规模限制为 100 万或 10 万,2010 年美国的产出会降低多少。这些限制对今天的产出影响很小。如果自 1900 年以来城市规模就被限制在 100 万人,2010 年的产出将仅比其观测值低 8%。