我们提出了新方法,用于精确合成具有高成功概率和门保真度的单量子比特幺正,同时考虑了时间箱和频率箱编码。所提出的方案可通过光谱线性光学量子计算 (S-LOQC) 平台进行实验,该平台由电光相位调制器和相位可编程滤波器(脉冲整形器)组成。我们评估了两种编码中任意门生成的两种最简单的 3 组分配置的保真度和概率性能,并使用单音射频 (RF) 驱动 EOM,为时间箱编码中任意单量子比特幺正的合成提供了精确的解析解。我们进一步研究了使用紧凑实验装置在多个量子比特上并行化任意单量子比特门,包括光谱和时间编码。我们系统地评估和讨论了 RF 带宽(决定驱动调制器的音调数量)以及不同目标门的编码选择的影响。此外,我们还量化了在实际系统中驱动 RF 音调时,可以并行合成的高保真 Hadamard 门的数量,且所需资源最少且不断增加。我们的分析将光谱 S-LOQC 定位为一个有前途的平台,可进行大规模并行单量子位操作,并可能应用于量子计量和量子断层扫描。
摘要 — 随着商用量子计算机种类的不断增加,对能够表征、验证和确认这些计算机的工具的需求也在不断增加。这项工作探索了使用量子态断层扫描来表征单个量子比特的性能,并开发了矢量场可视化来呈现结果。所提出的协议在模拟和 IBM 开发的量子计算硬件上进行了演示。结果确定了此硬件标准模型中未反映的量子比特性能特征,表明有机会提高这些模型的准确性。所提出的量子比特评估协议作为免费开源软件提供,以简化在其他量子计算设备上复制该过程的任务。索引术语 — 量子计算、量子态断层扫描、量子比特基准
识别物质的相位具有相当大的挑战性,特别是在量子理论领域,因为基态的复杂性似乎随着系统规模的增大而呈指数增长。量子多体系统表现出一系列跨越不同相位的复杂纠缠结构。尽管已经有大量研究探索了量子相变和量子纠缠之间的关系,但在它们之间建立直接、实用的联系仍然是一个关键挑战。在这项工作中,我们提出了一种新颖、高效的量子相变分类器,利用强化学习优化的变分量子电路进行解纠缠。我们证明了该方法对横向场伊辛模型 (TFIM) 和 XXZ 模型中量子相变的有效性。此外,我们观察到该算法能够学习与 TFIM 中的纠缠结构有关的 Kramers-Wannier 对偶。我们的方法不仅可以根据解缠结电路的性能识别相变,而且还具有出色的可扩展性,有助于将其应用于更大、更复杂的量子系统。这项研究揭示了通过量子多体系统中固有的纠缠结构来表征量子相。
关于 OILTEK INTERNATIONAL LIMITED Oiltek International Limited(“Oiltek”及其子公司统称“集团”)是一家知名的综合工艺技术和可再生能源解决方案供应商,专门为全球植物油行业价值链的各个不同部门提供可靠、创新、多样化和全面的炼油工艺和工程解决方案。该集团的历史可以追溯到其主要运营子公司 Oiltek Sdn. Bhd.,该公司于 1980 年 12 月 1 日在马来西亚注册成立。Oiltek 拥有超过 43 年的业绩,已在五大洲的 34 多个国家成功设计、建造和商业化工厂。该集团经营三大核心业务 - 食用和非食用油炼油厂、可再生能源以及产品销售和贸易。集团在食用和非食用油精炼部门提供工程、采购、设计、施工和调试(“EPCC”)服务,用于食用和非食用油精炼厂、下游特种产品和加工厂;现有设施的升级和改造;以及交钥匙电池区内(“ISBL”)和电池区外(“OSBL”)基础设施工程。集团的可再生能源部门为可再生能源行业提供服务,包括多原料生物柴油、酶生物柴油、冬季燃料和棕榈油厂废水(“POME”)沼气甲烷回收厂的 EPCC;现有设施的升级和改造;以及交钥匙 ISBL 和 OSBL 基础设施工程,其中包括环境解决方案和蒸汽和发电的集成。Oiltek 的产品销售和贸易部门为集团创造经常性收入,其服务包括工程部件销售、代理和分销以及特种化学品贸易。
量子计算机的最初应用之一是量子系统的模拟。在过去的三十年中,模拟封闭量子系统和更复杂的开放量子系统的算法开发取得了长足的进步。在本教程中,我们介绍了用于模拟单量子比特马尔可夫开放量子系统的方法。它将各种现有符号组合成一个通用框架,可以扩展到更复杂的开放系统模拟问题。详细讨论了目前唯一可用于单量子比特开放量子系统数字模拟的算法。对更简单通道的实现进行了修改,消除了对经典随机采样的需求,从而使修改后的算法成为严格的量子算法。修改后的算法利用量子分叉来实现接近总通道的更简单通道。这避免了对具有大量 CNOT 门的量子电路的需求。Quanta 2023;12:131-163。
借助测量的量子纠缠提供了多种途径来向网络中的各方传达信息。在这项工作中,我们概括了以前的广播协议,并提出了广播乘积和多部分纠缠量子态的方案,在后一种情况下,发送者可以远程添加相位门或中止分发状态。我们首先关注网络中乘积量子态的广播,并将基本协议概括为包括任意基础旋转并允许多个接收器和发送者。我们展示了如何在网络中添加和删除发送者。概括还包括这样一种情况,即事先不知道要应用于广播状态的相位,但会将其提供给以另一种量子态编码的发送者。广播乘积状态的应用包括身份验证和三态量子密码学。在第二部分中,我们研究了在与多量子位相位门纠缠的多个接收器之间共享的单个多量子位状态的分布,其中包括图状态作为示例。我们表明,通过与发送者协调,接收者可以仅使用 Pauli X 基础测量来协助执行基于远程分布式测量的量子计算。作为此的另一个应用,我们讨论了多量子比特 Greenberger-Horne-Zeilinger 状态的分布。
摘要 先前的工作提供了将酉矩阵分解为一系列量子多路复用器的方法,但以这种方式创建的多路复用器电路可能高度非最小。本文提出了一种优化具有任意单量子比特量子目标函数和三元控制的量子多路复用器的新方法。对于多值量子多路复用器,我们定义了标准形式和两种新形式:固定极性量子形式(FPQF)和克罗内克量子形式(KQF)。从蝴蝶图的使用中获得灵感,我们设计了一种详尽构建新形式的方法。与以前使用经典布尔函数的基于蝴蝶的方法相比,这些新形式用于优化具有任意目标酉矩阵的量子电路。将新形式应用于各种目标门(如NOT、V、V +、Hadamard和Pauli旋转)的实验结果表明,这些新形式大大降低了三元量子多路复用器的门成本。
量子测量理论是围绕密度矩阵和可观测量建立的,而热力学定律则以热机和冰箱等过程为基础。量子热力学的研究融合了这两个不同的范式。在本文中,我们重点介绍了量子过程矩阵作为描述量子领域热力学过程的统一语言的用法。我们在量子麦克斯韦妖的背景下通过实验证明了这一点,其中通常研究两个主要量:平均功提取 ⟨ W ⟩ 和功效 γ,后者衡量反馈操作使用获得的信息的效率。利用量子过程矩阵工具,我们为这两个量开发了最佳反馈协议,并在超导电路 QED 装置中通过实验研究它们。
b'其次,我们定义一个模拟元素池 P ( \xcb\x9c A, N MO ),其中包含所有独特的单量子比特和双量子比特激发演化,分别为 180 \xcb\x9c A ik ( \xce\xb8 ) 和 \xcb\x9c A ijkl ( \xce\xb8 ),其中 i、j、k、l \xe2\x88\x88{ 0 , N MO \xe2\x88\x92 1 } 。该池的大小为 || P ( \xcb\x9c A, N MO ) || = N MO 2 +3 N MO 4 。181'
量子步行已被视为通用量子计算的原始。通过使用描述单个粒子离散时间量子步行所需的操作,我们证明了在两个Qubit System上实现通用门的实现。这个想法是要收获单个量子位的有效希尔伯特空间及其在位置空间叠加中演变的位置空间,以实现多Qubit的状态和量子门上的通用量子集。与基于电路的计算模型相比,在拟议的量子步行模型中,以工程任意状态形式实现了许多非平凡的门。我们还将讨论模型的可扩展性和一些命题,以实现较大的量子系统中使用较少数量的Qubits。