作者Jane Speight教授* PhD,1,2 Elizabeth Holmes-Truscot* Phd,1,2 Mathew Garza,3 Renza Scibilia,4 Sabina Wagner MSC,5 Asuka Kato Phd,6 6 Sabone Pedrero Pedrero Phd,7 Sonya desch)Phd,8 Susandes Phd,8 Susan jusan jus liul phn jun jun j guin phd phd phd,9 sh k. 9 k. PhD, 11 Prof Ingrid Willaing MPH, 5,12 KaƟe M Babbot, 13 Bryan Cleal PhD, 5 Jane K Dickinson PhD, 14 Jennifer A Halliday BHealthSci(Hons), 1,2 Eimear C Morrissey PhD, 15 Giesje Nefs PhD, 16,17,18 Shane O'Donnell PhD, 19 Anna Serlachius PhD, 13 Per Winterdijk MD, 20 Hamzah Alzubaidi PhD, 21 Bustanul Arifin PhD, 22 Liz Cambron-Kopco PhD, 23 Corinna Santa Ana (Cornejo), 24 Emma Davidsen MSc, 5 Prof Mary de Groot PhD, 25 Maartje de Wit PhD, 26 Phyllisa Deroze PhD, 27 Stephanie Haack MSc, 28 Prof Richard I G Holt FRCP, 29,30 Walther Jensen, 31 Prof Kamlesh KhunƟ FMedSci, 32 Karoline Kragelund Nielsen PhD, 5 Tejal Lathia MD, 33 Christopher J Lee, 34 Bridget McNulty, 35 Prof Diana Naranjo PhD, 36 Rebecca L Pearl PhD, 37 Suman Prinjha PhD, 32 Prof Rebecca M Puhl PhD,38 Anita Sabidi,39 Chitra Selvan MD,40 Jazz Sethi,41 Mohammed Seyam MD,42 Jackie Sturt Phd教授,43 Mythily Subramanian MD,44,4,45蒂莫西·斯金纳(Timothy C Skinner)博士。2,49,50
Yanjia Zhou,A Feng Li,A,B Guihong Lan,A* Yongqiang Liu,C Haiyan Qiu,A Bo Xu,A Keyu Pu,A Wenren Dai,A Xinyang Zhang,A a。西南石油大学,化学与化学工程系,成都610500,中国。b。 Yibin Tianyuan Group Co.,Ltd.,Yibin 644004,中国。c。英国南安普敦南安普敦大学工程与物理科学学院。
雨水排水 o 设计系统:CB-LP o 补给盆地:否 地下水管理区:IV(0-10 和 0-25 年地下水) 供水:公共 卫生下水道:NA 概述——申请人(Canal Southampton Battery Storage, LLC)提议清理现有的 4.9 英亩/213,444 平方英尺的林地和部分住宅开发的场地,以建造新的电池储能系统 (BESS) 设施。约 44,045 平方英尺的场地(20.67%)将被拟建的 100 MW x 200 MWh(即 200,000 kWh)设施覆盖。工作人员报告末尾提供了一份场地平面图,作为附件 1。预计施工约需六个月。该场地位于南安普敦镇,距离辛纳科克运河约 1,000 英尺。可通过西边与场地接壤的北路/CR 39 进入场地。该场地北边与日出高速公路/CR 27 接壤,东边和南边是高速公路的 U 形出口匝道,周围环绕着树木繁茂的区域。出口匝道南边是空置的房产,毗邻长岛铁路 (LIRR)。场地的海拔范围从西边沿北路的平均海平面 (amsl) 约 10 英尺,到东北角约为 40-45 英尺。场地的西边也位于海浪、湖泊和飓风 (SLOSH) 引起的陆地涌浪区 #3 和 #4 内。该场地不在农业区内,也不在 FEMA 百年一遇的洪水区内,也没有任何水体或湿地。该地点的地下水流动时间为 0-10 年和 0-25 年。值得注意的是,该地点位于指定的潜在环境正义区 (PEJA) 社区内。
摘要。不同的几何方法,以对称正定定义(SPD)矩阵的形式分析和处理数据的几何方法对包括计算机视觉,医学成像和机器学习在内的众多领域具有显着的成功应用。此类应用的主要几何范式由与高度和高维度相关的光谱计算相关的一些riemannian几何形状组成。我们提供了一个可扩展的几何框架的途径,以基于半概括的希尔伯特和汤普森的几何形状,基于极端概括的特征值的有效组合,以分析和处理SPD值的数据。我们详细探讨了基于汤普森几何形状的特定地理空间结构,并建立了与该结构相关的几个属性。此外,我们基于这种几何形状来定义SPD矩阵的新型迭代平均值,并证明了它的存在和独特性,用于给定的有限点集合。最后,我们指出并证明了许多所满足此均值的理想属性。
7.4 制造................................................................................................................ 115
中南部 SAP 旨在指导区域和地方道路安全工作的实施,从而改善所有道路使用者的安全结果。中南部安全战略围绕安全系统方法的五个互补目标中的四个(更安全的道路、更安全的速度、更安全的人员和加强的事故后护理)而制定,中南部对策与基于基础设施的安全目标(更安全的道路和更安全的速度)直接相关。中南部行动项目定义了可实施的活动,旨在支持和解决该计划设立的一个或多个安全目标。鼓励 MPO 辖区使用中南部战略、对策和行动项目作为选择、制定和评估当地道路安全计划、方案、项目和/或政策变化的指南。如果项目属于以下至少一个类别,则将被视为与该计划一致:该项目推进了一个或多个中南部安全目标或战略;该项目应用了一个或多个中南部对策或行动项目;或者该项目提议在指定的高伤害走廊沿线或公平区域内进行基础设施改善或项目干预。
英国已受到长期气温上升的影响,2022 年 7 月英国部分地区的气温将超过 40oC。最近十年(2008-2017 年)平均气温比 1961-1990 年的平均气温高 1-1.2°C。英国最热的十年都发生在 1990 年之后,最热的九年发生在 2002 年之后。除了地球表面变暖之外,气候还发生了许多其他变化,包括海平面上升和极端天气事件增多。2015 年 12 月举行的联合国气候变化大会(COP21)上,195 个国家通过了首个全球气候协议,该协议将于 2020 年生效。该协议制定了一项全球行动计划,旨在将全球变暖限制在比工业化前水平高出 2°C 以下,并努力将温度限制在 1.5°C,从而使世界避免危险的气候变化。为此,我们需要在 2050 年实现净零碳排放,才有机会限制气温上升并避免气候变化的最坏影响。英国政府是第一个设定到 2050 年实现净零排放的具有法律约束力的目标的国家。该委员会认识到气候变化危机的紧迫性以及尽快采取行动的好处。净零意味着将排放量尽可能减少到接近零,并通过从大气中去除任何剩余排放量来平衡任何剩余排放量,并通过基于自然的碳封存行动(例如植树)或基于技术的行动(例如碳捕获)来“抵消”剩余排放量。当使用“排放”一词时,我们指的是加剧气候变暖的温室气体排放 (GHG)。温室气体主要是二氧化碳(也称为 CO2)和甲烷 (CH4),这些气体来自燃烧化石燃料获取能源(2018 年,全球 89% 的二氧化碳排放来自化石燃料和工业)和制冷剂(制冷和冰箱占全球排放量的 10%)。在整个战略中,当谈到占单一单位所有温室气体的吨时,都会提到二氧化碳当量(CO2e)。
• 普华永道估计,2022 年全国增长率将在 4.5%(有限增长情景)和 5.1%(加速增长情景)之间。根据这些估计,到 2022 年,南安普敦经济价值可能超过 82 亿,比疫情前基线(2019 年)高出 5 亿多
摘要:由于惯性较低且缺乏与其他电网的互连,孤立电网很脆弱。随着不可调度可再生能源的普及,此类孤立电网的脆弱性进一步增加。印度政府已提出多个项目来提高安达曼和尼科巴群岛电网的光伏系统 (PV) 普及率。本文研究了由柴油和天然气发电机、光伏和电池储能系统 (BESS) 供电的孤立电网的能源和备用发电联合随机调度。所提出的随机调度模型考虑了广泛的概率预测情景,而不是假设单点预测的确定性模型。因此,它为广泛的光伏电力预测情景提供了技术上可行的最佳解决方案。本研究开发的模型的显著特点是纳入了随机约束,这些约束代表 (i) 光伏和 BESS 之间的协调、(ii) 备用约束、(iii) 电池充电/放电限制约束,以及 (iv) 确保调度决策技术可行性的非预期约束。所提出的模型在南安达曼岛的数据集上得到验证。结果揭示了所提出的随机调度模型对不同发电组合场景的适用性和可行性。
鉴于,镇委员会已考虑根据 NYStretch 能源法规 2020 修改第 123 章(建筑施工)第 V 条(节能);鉴于 NYStretch 是一个模范拉伸法规,比 2020 年纽约州节能建筑法规 (2020 ECCCNYS) 的最低要求高 10% 到 12%;鉴于,镇委员会于 2021 年 11 月 23 日和 2021 年 12 月 14 日通过视频会议就该修正案举行了公开听证会,并结束了该听证会;鉴于,为采用 NYStretch 能源法规 2020,对第 123 章(建筑施工)第 V 条(节能)的修订得到了利益相关者和社区的大力支持;鉴于在整个公开过程中,立法得到了完善,如本文所反映的那样;鉴于,土地管理局已建议,根据《纽约州环境质量审查法案》(SEQRA)6 NYCRR 第 617 部分和南安普敦镇法典第 157 章(环境质量审查),该拟议地方法律被归类为“未列出的行动”;且;鉴于,镇委员会已审查了土地管理局准备的环境评估表中包含的信息,并已考虑了潜在影响的程度和重要性;且鉴于,除镇委员会外,没有其他涉及机构;因此,现决定,镇委员会特此承担牵头机构的地位,并认定拟议的行动不会对环境造成重大不利影响,因此无需准备环境影响声明,并特此根据《纽约州环境质量审查法案》(SEQRA)6 NYCRR 第 617.7 部分和镇法典第 157-7 章发布否定声明;并进一步决议,现通过 2021 年第 25 号地方法律,内容如下: