执行摘要 美国宇航局载人航天计划在航天飞机和国际空间站 (ISS) 计划中积累了多年的经验,可以执行外部飞行器近距离活动,例如载人舱外活动 (EVA)、机器人技术、对接和检查。这些体验在低地球轨道 (LEO) 的每个轨道上每 45 分钟在全日照下进行一次。月球表面,尤其是南极,由于昼夜循环持续一个月(参见下图与阿波罗条件的比较)以及太阳相对于南极表面的角度极低,照明条件较差。外部照明系统的探索需要为永久黑暗和永久强烈阳光做好规划。本 Artemis 照明注意事项概述技术简介旨在为开发适合人类和机器视觉相关 EVA 任务的综合照明架构计划提供指导。照明工程过程可能涉及在功率限制和光源及操作员位置的物理限制内满足这些需求的权衡。将该解决方案作为一个综合设计项目处理,将提供所有最终项目组件(宇航服、月球地形车(LTV)、载人着陆器系统(HLS)和表面)的开发,以提供高效的照明系统,支持机组人员安全和任务目标的执行。
图 1:南极冰山跟踪数据库记录的 B30 冰山轨迹(Budge 和 Long,2018 年):2012 年从思韦茨冰架崩解后,它跟随沿海洋流向西移动,2017 年开始向北漂移,最终于 2019 年解体。黑点标记了 CryoSat-2 飞越冰山的可用位置,圆圈表示本研究中使用的 MODIS 和 Sentinel 1 图像的位置 120
图 1:南极冰山跟踪数据库记录的 B30 冰山轨迹(Budge 和 Long,2018 年):2012 年从思韦茨冰架崩解后,它跟随沿海洋流向西移动,2017 年开始向北漂移,最终于 2019 年解体。黑点标记了 CryoSat-2 飞越冰山的可用位置,圆圈表示本研究中使用的 MODIS 和 Sentinel 1 图像的位置 120
已有20年了,Gritta Veit-Köhler博士一直在研究所谓的Meiofauna:不到一毫米小的小生物,这些微小的生物通过帮助回想海底的矿产来对深海生态系统具有重要功能。在这次引人入胜的访谈中,德国海洋生物多样性研究中心(DZMB)生态生物多样性部主管Veit-Köhler博士在南极探险期间的生活,她的工作动机和深海的令人难以置信的多样性提供了见解。
Madelaine调查了目前鲜为人知的海洋过程,这些过程负责融化南极冰架。她使用高分辨率海洋模型来针对预期将升高的热传输到冰(例如内波活动)的过程,并量化其对冰架基础熔化的影响。她将结合工作中的新成果,以开发和实施一个新的参数化来实现基础融化。这可以在大规模的海洋和气候模型中使用,以提高未来气候和海平面投影的准确性。
摘要。在本研究中预先提出了极地区域大气气候模型(称为RACMO2.4P1)的下一个版本。主更新包括嵌入Intecast的预测系统(IFS)周期47R1的物理参数包装包。这构成了降水,对流,湍流,气溶胶和表面方案的变化,并包括一种新的云方案,具有更多的预后变量和专用的湖泊模型。fur-hoverore,独立的IF辐射物理模块ECRAD被纳入RACMO,并引入了非冰期区域的多层雪模量。其他更新涉及引入分数陆地面膜,新的和更新的气候数据集(例如气溶胶构成和叶子面积指数),以及对冰川区域的几个参数化的修订。作为概念证明,我们向格陵兰,南极和北极地区的地区展示了第一个结果。通过将结果与观测结果和先前模型版本(RACMO2.33)的输出进行比较,我们表明该模型在表面质量平衡,表面体能平衡,温度,风速,风速,云含量和积雪深度方面很好地形成了。雪水头的对流强烈影响冰盖的局部表面质量平衡,特别是在高积累的地区,例如东南绿地和南极半岛。我们严格评估模型输出,并确定一些可以从进一步的模型开发中拟合的过程。
8 月 23 日是印度的国家太空日,旨在纪念印度的太空成就,尤其是月船三号的成功。随着 2023 年月船三号的发射,印度成为第四个成功登陆月球的国家,也是第一个到达南极地区的国家。它凸显了印度的太空探索能力,旨在激励后代从事科学、技术、工程和数学 (STEM) 职业,为印度正在进行的太空事业做出贡献。2024 年主题:
澳大利亚政府卫生部 塔斯马尼亚卫生部 南极、偏远和海洋医学中心 (CARMM)(TRGP-CU 管理小组) 塔斯马尼亚卫生服务局 澳大利亚乡村和偏远医学院 (ACRRM) 澳大利亚皇家全科医师学院 (RACGP) 塔斯马尼亚全科医学培训 (GPTT) 塔斯马尼亚乡村医生协会 (RDAT) 塔斯马尼亚研究生医学委员会 (PMCT) 乡村卫生社区 原住民社区控制的卫生组织 乡村全科医生 全科医生注册员 RG 主管/医学教育者 RUSTICA 塔斯马尼亚大学 (UTAS) 乡村和区域培训中心 UTAS 乡村临床学院 HR Plus+ 乡村全科医生 Ochre Health(塔斯马尼亚 GO2747 的资助者) 皇家飞行医生服务塔斯马尼亚 (RFDS) 远程职业培训计划有限公司 (RVTS) 澳大利亚南极司 (AAD) 塔斯马尼亚初级卫生保健 (PHT) 全科医生澳大利亚注册医师协会 (GPRA) 澳大利亚全科医师监督员协会 (GPSA) 其他州农村全科医生途径协调单位
水中的trip含量的抽象建模是一种有意义的方法,可以评估气候模型中水周期的表示,因为它可以追溯水周期内和储层之间的通量(平流层,对流层和海洋)。在这项研究中,我们介绍了在大气通用循环模型(AGCM)MIROC5 -ISO中的自然trimatium及其在1979 - 2018年期间的模拟。由于最近发表的trium生产计算,我们能够首次研究与11年太阳能周期对降水中Tritium的自然产量产生的影响。miroc5 -iso正确模拟了对降水中tri的大陆,纬度和高度影响。与平流层 - 对流层交换相关的季节性trip含量峰值也可以准确地模拟时间安排,即使MiroC5 -ISO低估了变化的幅度。div> div> div> div> div> div> div> div> div> div> div> div> div> div> div>与在南极洲的沃斯托克(Vostok)的观察结果一致,例如,我们的模拟表明,内部气候变异性在极性沉淀中在tritium中起重要作用。由于其对南极涡流的影响,南环模式增强了生产成分对南极降水的trim的影响。在格陵兰岛,由于北大西洋振荡对湿度条件的影响,在降水中检测到降水中11年太阳周期的东 - 西对比。