在过去的几十年中,金属有机框架(MOF)的研究兴趣增加了。1,2 MOF是由具有多型有机配体或接头的无机建筑单元(即离子,簇或链)的组合和中心结构的自我上光性的结构,这些结构或连接器具有多型有机配体,或者是链接器,这些结构或接头是一个机构建筑单位。3最小的重复单元通常是无机节点和周围有机接头的组合,通常称为二级建筑单元(SBU)。是由于它们的结构特性,例如高孔隙率和巨大的自由体积,值高达90%,4-6,因此已经探索了MOF的几种潜在应用,包括但不限于气体吸附,7-9催化,10-13催化,10-13化学感应,14,15和水处理。16–18尽管有一些无定形MOF的例子,但19个远程顺序 - 即结晶度 - 是截至今天的绝大多数MOF中统治的结构特征。20个crys-甲甲基材料由于其已知的组成和恒定密度以及功能的均匀分布而有利。在MOF中,可以使用晶体结构来确定吸附位点的位置,21个合成后修饰的证明,22,23,并精确地鉴定了孔隙占据的物种。24通常,有两种方法用于确定MOF中的结晶度。如果合成的MOF微晶的大小<50μm,则可以使用粉末X射线衍射(PXRD)检查微晶粉末。25获得衍射图后,可以将其与已知结构的模拟模式进行比较,以确认相位纯度和MOF的整体拓扑。另外,与其他特征技术结合使用,PXRD可用于通过Rietveld改进方法获取有关新合成材料的结构信息,该方法涉及对离子在单位电池中的位置进行建模。26,27当结晶石大小>50μm时,则可以使用单晶X射线衍射(SCXRD)来获得MOF的绝对结构信息。到今天为止25,28,获得适合SCXRD的MOF Sample可能是一项艰巨的任务,因为在大多数情况下,生长和nu效率之间没有显着差异,从而导致微晶
圣安东尼奥港(Div>)在3亿美元的未来派办公大楼中揭示了新的细节,因为该办公大楼的计划已经发展,其开放日期已返回到2029年的麦迪逊·伊斯勒(Madison Iszler) - 2024年3月3日,一座闪闪发光的机翼形状建筑物,在圣安东尼奥港(Port San Antonio)上升了3亿美元,将耗资约3亿美元,并将耗资约50美元的租金或更高的城市居住在城市中。但是,尽管圣安东尼奥的办公室空缺上升,但港口首席执行官吉姆·帕奇巴赫(Jim Perschbach)相信他不会在填补空间时感到不安。他说,未来派的塔楼将是港口的网络安全,航空航天,防御和高级制造工作的例证,也是提高城市形象的方法。他说,像芝加哥,奥斯汀和达拉斯这样的地方拥有这样的建筑物,这些建筑物是由像港口一样高薪工作的公司所占据的。“这可能比我想的要困难,我们将以一种或另一种方式进行操作。因为我希望人们意识到圣安东尼奥已经有能力与所有人在世界舞台上竞争,但是我们必须开始展示它。”帕奇巴赫说。“如果我们建造的只是这些常规的行人建筑,那么我们讲的故事是我们的工作是行人。”数据似乎支持他的乐观。虽然整个城市的办公空置率接近20%,但港口820万平方英尺的4%空缺。有80多名租户致电1,900英亩的校园房屋,并共同拥有18,000名员工的薪水,一名劳动力Perschbach预计在未来七到十年中会增加一倍,增加对太空的需求。重建凯利(Kelly)11层,295,000平方英尺的建筑是该港口剩余800英亩的开发的一部分。国防基地的关闭和重组委员会下令凯利空军基地于1995年关闭,并于2001年正式关闭,对圣安东尼奥造成了重大打击。占地4,017英亩的基地中,约有一半被转移到圣安东尼奥 - 拉克兰联合基地,该市创建了一个非营利性港口管理局,以拥有,运营和重建其余的港口。从那以后,该组织建立了机库,空中货物设施和办公楼,并为包括波音公司,标准赛车,埃森哲Plc,CNF Technologies Corp.,Northrop Grumman Corp.和Booz Allen Hamilton等租户进行了翻新。它还获得了数百万美元的资金来改进基础设施。
多址信道描述了多个发送者尝试使用某种物理介质将消息转发给单个接收者的情况。在本文中,我们考虑了这种介质仅由单个经典或量子粒子组成的场景。为了精确地比较量子信道和经典信道,我们引入了一个操作框架,其中所有可能的编码策略都只消耗一个粒子。当用于通信时,这种设置体现了用单个粒子构建的多址信道 (MAC)。多方通信任务包括 N 个空间分离的发送者( A 1 , A 2 ,· · · AN )和一个接收者( B )(参见图 1 (a)),其中发送者 A i 位于路径 i 上并希望发送从集合 A i 中抽取的经典消息 ai,接收者 B 获得一些属于集合 B 的输出数据 b,这些数据取决于发送者选择的消息集合( a 1 , a 2 ,· · · ,a N )。理想情况下,b 应该是所有 N 条消息的完美副本,即 b = ( a 1 , a 2 , · · · , a N )。然而在实践中,一些物理限制会阻碍完美的通信。在这种情况下,通信由转移概率 p ( b | a 1 , · · · a N ) 描述。分布 p ( b | a 1 , · · · a N ) 统称为 MAC [ 1 ],即无线通信中所说的上行信道 [ 2 ]。最终,概率 p ( b | a 1 , · · · a N ) 由用于传输信息的特定物理系统决定。我们在此提出的问题是,在仅使用单个粒子实现通信信道且其内部自由度都不可访问的限制下,可以生成哪些 MAC 。更准确地说,信息只能以外部关系自由度进行编码,例如粒子在时空中占据的哪些特定点。我们感兴趣的是比较当使用量子粒子和经典粒子以这种方式传输信息时可以实现的 MAC。在比较经典和量子 MAC 之前,我们根据系统具有的不同级别的共享随机性定义并比较了不同的经典 MAC。这些经典 MAC 分别表示为 CN 、 C ′ N 和 conv[ CN ],代表没有共享随机性、部分共享随机性和完全共享随机性的情况(如图 1 所示)。我们表明,这些 MAC 在具有二进制输入和输出的通信场景中是相同的,即当 |A i | = |B| = 2 时,而对于更一般的情况,它们完全不同。为了方便讨论,我们还引入了所有这些 MAC 的超集,我们称之为可分离 MAC,C (sep) N ,它由具有概率分解 p ( b | a 1 , · · · , a N ) = PN i =1 pigi ( b | ai ) 的 MAC 组成。我们分析了这些 MAC 的结构,并表明它们与二进制情况下更受限制的家族相同。我们的主要结果涉及提供 N 方经典 MAC 的完整表征,这些 MAC 可以从单个经典粒子和受限制的局部数保持 (NP) 操作构建而成。简而言之,NP 操作具有膨胀,其中总粒子数得以保留。主要发现是这些 MAC 完全以消失的二阶干扰项来表征。更准确地说,特定的线性组合
位置 大马尼斯蒂克湖面积为 10,346 英亩(Breck 2004),位于密歇根州上半岛卢斯县和麦基诺县边界的马尼斯蒂克河流域(乡镇 44 和 45 N,范围 11 和 12 W)(图 1)。在卢斯县,赫尔默(莱克菲尔德乡镇)位于大马尼斯蒂克湖的东北岸。在麦基诺县,柯蒂斯(波蒂奇乡镇)位于大马尼斯蒂克湖的东南偏南,毗邻南马尼斯蒂克湖北岸。大马尼斯蒂克湖是马尼斯蒂克湖中最大的一个,也是密歇根州第七大内陆湖(Laarman 1976),平均深度为 10 英尺,最大深度为 23 英尺。地质和地理 大马尼斯蒂克湖位于马尼斯蒂克基岩地质构造内,该构造由一条薄薄的白云岩和石灰岩带组成,横跨三角洲县和麦基诺县 (MDNR 2001)。该地区的岩石类型主要是沉积岩,为大马尼斯蒂克湖的亲石产卵鱼类(如大眼鲷)提供了丰富的栖息地。大马尼斯蒂克湖周围的地表地貌主要由冰碛(45.6%)和湖泊/沙丘(16.6%)组成。细小的“沙丘”基质(如沙子)会填充正在发育的鱼卵和胚胎占据的间隙,从而对大马尼斯蒂克湖近岸产卵栖息地造成危害。大马尼斯蒂克湖附近的土地覆盖类型包括森林(40.7%)、湿地(37.0%)、水域(11.6%)、农业(4.8%)、城市(3.8%)、草地/灌木(1.8%)和荒地(0.3%)(图 2)。该地区的地表地质由大量粗糙(62.2%)的纹理材料以及无纹理的有机材料(37.8%)组成。粗糙纹理材料遍布整个湖泊,有助于提供近岸产卵栖息地。粗糙纹理材料还促进了湖泊较深区域的冷地下水交换,冷水物种和冷水物种(例如,分别是 Walleye 和 Cisco)都生活在那里。其余的湖岸由无纹理材料(沙子和有机材料)组成,地下水渗透性低到中等(Madison 和 Lockwood 2004)。大马尼斯蒂克湖周围的土壤类型以草本有机物和沙壤土冰川沉积物为主(USDA 2024)。岛屿群大马尼斯蒂克湖共有四个岛屿,包括福斯特岛、格林菲尔德岛、古尔岛和伯恩特岛,面积分别约为 8、2、1 和 1 英亩。其中一个岛屿(即格林菲尔德岛)已基本开发,其余三个则处于自然状态。流域描述大马尼斯蒂克湖北部的赫尔默溪和南部的波特奇溪水源(图 1)。赫尔默溪从北马尼斯蒂克湖向西南流入大马尼斯蒂克湖。位于赫尔默溪上的特雷斯勒大坝限制了湖泊之间上游鱼类的通道。波蒂奇溪从南马尼斯蒂克湖向东北流入大马尼斯蒂克湖,并设有水位控制
2018; Tirelli等,2018)。特定的血管密度,直径和曲折被发现(Ravi等,1998; Djaberi等,2013; Sasahira和Kirita,2018)。在这种情况下,OSCC病变中微脉管系统的研究已成为有前途的诊断途径。用于评估口腔微举行的成像模式在过去十年中已有显着发展,并且包括高频超声(Huang等,2017; Fogante等,2022),实时光学血管成像(RTOVI)(RTOVI)(RTOVI)(RTOVI)(Bastos等,20222)和视频。但是,与光学成像技术相比,高频超声受其分辨率的限制,而RTOVI受到限制性视野的挑战。视频 - 毛细管镜检查仅具有浅渗透深度,因为使用可见光进行成像。这些限制可能会影响这些技术在OSCC最早阶段捕获细微的血管变化的能力。因此,迫切需要更先进的非侵入性成像技术,这些技术可以准确地可视化和量化OSCC中的微血管变化,从而促进早期和更有效的诊断。基于光学连贯性层析成像(OCT)的血管造影(OCTA)是成像技术中相对较新的创新,已针对口服诊断的应用开发(Choi和Wang,2014; Chen and Wang,2017; Tsai等,2017; Le等,2018; 2022; 2022; 2022; Wei et al an e e et al。,2018 al。这些指标可以在表征各种血管疾病方面带来进步。作为一种非侵入性成像技术,Octa提供了微血管结构的高分辨率,三维视图,而无需对比度(Kashani等,2017)。该技术是基于捕获红细胞对比的原理,从而提供了组织内血流的详细图像(Chen and Wang,2017)。这些新兴应用突出了Octa在口腔医疗保健中的重要意义,为基于成像的口腔疾病评估提供了新的领域。八八颗,这种非侵入性功能成像技术在口服成像中表现出了承诺,仍然需要对捕获的口腔血管造影的客观评估技术。在其他应用中已经实施了对OCT血管造影的定量评估,例如心脏病学(Xie等,2024),皮肤病学(Untracht等,2021; Manfredini等,2023),2023年,2023年)和眼科(Reif等,2012; Agemy et al。et al.,2015年; Engberg等人,2020年;For the analysis of microvascular structures, the aforementioned studies introduced several parameters, such as vessel area density (VAD) ( Reif et al., 2012 ; Jia et al., 2015 ), vessel skeleton density (VSD) ( Reif et al., 2012 ; Agemy et al., 2015 ), vessel diameter index (VDI) ( Chu et al., 2016 ), and tortuosity index (Ti)(Lee等,2018; Martelli和Giacomozzi,2021)。VDI可以通过分析血管的平均直径进一步贡献(Chu等,2016)。vad通过测量血管占据的面积(2012; Jia等,2015; Chu等,2016),提供了对血管网络密度的见解,而VSD则重点介绍这些容器的长度,从而提供了不同的观点,提供了不同的观点(Reif等人(Reif等人)(Reif等人,2012年,2012年; Agemem et egemem et al。这些参数对于识别和量化可能表明疾病存在或进展的细微血管变化至关重要。但是,重要的是要注意,这些参数中的每一个都可能只有
分类为电导体的材料具有有效携带或运输电流的能力,而由于内部电子的移动有限,绝缘子无法这样做。电子流经物质的易于性主要取决于它们可以轻易地经过其原子和原子核的方式。铁和钢等材料是示例性的导体,而玻璃和塑料等物质的电导率较差。价电子在电导传导中的作用不能夸大;这些最外面的电子与他们的父原子松散结合,并且可以相对容易从其位置移开。易于获得或损失电子的无机材料通常显示高电导率,而有机分子由于将它们固定在一起的强共价键而倾向于绝缘。有趣的是,某些材料可能会根据其组成而表现出不同水平的电导率;例如,纯净水是一种绝缘子,但脏水在某种程度上导致电力。添加杂质或与其他元素掺杂可以显着改变材料的电导率。在电导体中,由于普通条件下的高电导率,银是最好的。然而,它对破坏的敏感性和随后降低电导率的氧化物层的形成不可忽视。相反,经常在需要电流控制的应用中使用强大的绝缘子,例如橡胶,玻璃和钻石。某些材料在极低的温度下成为超导体。材料的形状和大小在确定其电导率水平方面也起着至关重要的作用;较厚的碎片通常表现出比较薄的电导性能更好。此外,温度波动会影响电导率水平,而温度通常会导致材料内的电子迁移率提高。大多数材料根据温度和其他因素表现出不同水平的电导率。凉爽的金属通常是好的导体,而热金属的效率往往降低。传导本身有时会改变材料的温度。在导体中,电子自由流动而不会损害原子或引起磨损。但是,移动电子确实会遇到阻力。因此,流经导电材料的电流会加热它们。金属和等离子体通常是好的导体,这是由于其价电子的移动性。绝缘子通常由有机分子组成,主要由牢固的共价键组合在一起,使电子很难流动。掺杂或杂质等因素也会影响电导率,如纯净水是绝缘体,但由于自由浮动离子而导致的盐水。所有材料都可以根据表1。表1:导体,绝缘体和半导体特性铜是一个众所周知的导体,以最小的对立传递电流。橡胶是一种绝缘子,通常用于涂上用于电动工作的工具手柄。van de Graaff在1930年代。需要极高的电压才能迫使橡胶进入传导。石墨,一种碳的形式,用作半导体,限制了给定电压产生的电流量。在本文中,我们探讨了导体,绝缘体和半导体的一些特征。导体导体是一种对电子流(电流)几乎没有反对的材料。由于其电阻较低,因此通过它产生电流所需的能量很少。最好的导体具有最低的电阻,使其非常适合传输电流。一个原子的价壳决定其电气特性,其价值壳电子和单位体积原子的数量影响电导率。绝缘子绝缘子是具有极高电阻的材料,可防止电流流动。例如,电源线上的绝缘材料可防止电流在接触时到达您。一些元素,例如霓虹灯,是天然绝缘体。用于保护技术人员的常见绝缘子包括橡胶,特氟龙和云母等化合物。正如预期的那样,导体和绝缘子具有相反的特性,绝缘子具有完整的价壳,单位体积的原子很少。半导体的任何表现出导体和绝缘子之间中间电导率的元素都可以视为半导体。半导体:当面对明显的电阻时,导体和绝缘子铜之间具有耐药性的材料最小的对立变得显而易见。当原子紧密相互作用时,它们的能级堆在一起。等式1实现了两个主要目的:它使我们能够计算利息并揭示利息价值及其变量之间的关系。例如,等式1说明$ r = \ rho \ frac {l} {a} $,证明电阻与电阻率,长度和与横截面面积成反比成正比。此外,温度由于温度系数而影响导体的电阻率,导体随着温度的升高而升高。回顾问题概述了导体,绝缘体,半导体的定义,并解释了电导率如何由价电子和原子密度确定。电阻率定义为特定材料体积的电阻,通常以CMIL-ω/FT或ω-CM单位测量。导体表现出正温度系数,表明随着温度升高的耐药性增加。这种基本的理解将材料根据电导率的电导率分类为导体,绝缘体和半导体。例如,如果两个原子连接,则与单个原子相比,相邻能级的数量将是两倍。随着越来越多的原子融合在一起,这种模式继续存在,形成了多个层次的集群。在固体中,许多原子会产生大量的水平,但是大多数高能级均融合到连续范围内,除了根本不存在的特定差距。这些没有级别的区域称为带隙。电子占据的最高能量簇被称为价带。这种现象用于保护与保险丝的电路。导体具有部分填充的价带,具有足够的空位,使电子可以在电场下自由移动。相比之下,绝缘子完全填充了其价带,并在其之间留下了很大的差距。这个较大的间隙可防止电子移动,除非有足够的能量越过。半导体在价和传导带之间的差距较小。在室温下,由于热能,价带几乎已经满,导致某些电子转移到传导带中,它们可以在外部电场下自由移动。Valence带中留下的“孔”表现就像正电荷载体。温度较高的材料倾向于增加对电流的抵抗力。例如,5°C的温度升高可提高铜的电阻率2%。相反,由于电子在传导带中的填充水平升高,绝缘体和半导体的电阻率降低,它们可以在外部电场下移动。价和导带之间的能量差会显着影响电导率,较小的间隙导致温度较低的电导率较高。分子由于放射性元件和宇宙射线的辐射而分离为离子,使大气导电中的某些气体产生。电泳根据颗粒在电解溶液中的迁移率分离。欧姆加热会在电流流过电线时,如电线或灯泡所示。电阻器中消散的功率由p = i^2r给出。但是,在某些材料中,由于碰撞而导致的能量损失在低温下消失,表现出超导性。发生这种情况是因为电子会失去对声子的能量,但是在超导体中,通过电子和材料之间的复杂量子机械相互作用来阻止这种能量损失。常用的超导体是一种niobium and Titanium合金,它需要冷却至极低的温度才能表现出其性质。在较高温度下发现超导性能彻底改变了各个领域,从而实现了液氮而不是昂贵的液态氦气。这一突破为电力传输,高速计算等中的应用铺平了道路。12伏汽车电池展示了如何通过化学反应或机械手段来利用电动力。Van de Graaff Generator是Robert J.由于其概念上的简单性,这种类型的粒子加速器已被广泛用于研究亚原子颗粒。该设备通过将正电荷运送到绝缘输送带上的正电荷从基部到导电圆顶的内部,在那里将其移除并迅速移动到外面。带正电荷的圆顶会产生一个电场,该电场排斥额外的正电荷,需要工作以保持传送带的转动。在平衡中,圆顶的电势保持在正值下,电流从圆顶流向地面,并通过在绝缘带上的电荷运输均衡。这个概念是所有电动力来源的基础,在该源中,在单独的位置释放了能量以产生伏特细胞。一个简单的示例涉及将铜和锌线插入柠檬中,从而在它们之间产生1.1伏的电势差。“柠檬电池”本质上是一个令人印象深刻的伏特电池,能够仅产生最小的电力。相比之下,由类似材料制成的铜锌电池可以提供更多的功率。此替代电池具有两种溶液:一种含有硫酸铜,另一种含硫酸锌。氯化钾盐桥通过电气连接两种溶液。两种类型的电池都从铜和锌之间电子结合的差异中得出了能量。能量,从电线中取出游离电子。同时,来自电线的锌原子溶解为带正电荷的锌离子,使电线具有多余的自由电子。这会导致带正电荷的铜线和负电荷的锌线,该锌线被盐桥隔开,该盐桥完成了内部电路。一个12伏铅酸电池由六个伏特电池组成,每个电池串联连接时大约产生大约两个伏特。每个细胞都具有并行连接的正极和负电极,为化学反应提供了较大的表面积。由于材料经历化学转换的速度,电池会递送更大的电流。电池电位为1.68 + 0.36 = 2.04伏。在铅酸电池中,每个伏电池都包含纯海绵状铅和氧化铅的正电极的负电极。将铅和氧化铅溶解在硫酸和水中。在正电极下,反应为PBO2 + SO -4- + 4H + + 2e-→PBSO4 + 2H2O +(1.68 V),而在负末端,它是Pb + SO -4-→PBSO4-→PBSO4 + 2e- +(0.36 V)。通过汽车发生器或外部电源为电池充电时,化学反应会反转。60Ω电阻连接到电动力。字母A,B,C和D是参考点。源将点A保持在电势12伏高于点D,从而导致VA和VD之间的12伏的电势差。由于点A和B通过具有可忽略的电阻的导体连接,因此它们具有相同的电势,并且点C和D具有相同的潜力。因此,整个电阻的电势差也为12伏。可以使用欧姆定律计算流过电阻的电流:i = va -vd / rb。代替给定值,我们得到i = 0.2安培。可以使用等式(22):p = i^2 * R计算热量中消散的功率。插入值,我们得到p = 0.04瓦。当热量来自电动力源时消散的能量。该源在将电荷DQ从点d到点A移动的工作中所做的工作由dw = dq *(va -vd)给出。电池传递的功率是通过将DW除以DT获得的,导致P = 2.4瓦。如果两个电阻串联连接,则等效电阻是个体电阻的总和:rab = r1 + r2。使用R1和R2的给定值,我们获得RAB =7Ω。并行连接两个电阻时,电荷具有从C到D流动的其他路径,从而降低了整体电阻。可以使用等式(20):1/rcd = 1/r1 + 1/r2计算等效电阻的值。代替给定值,我们获得RCD = 1/0.7 =1.43Ω。在阻抗为2欧姆或5欧姆的情况下,值得注意的是,这些方程式可以相对轻松地适应多种电阻。