我们引入神经网络作为人工智能模型之一。神经网络是生物神经细胞回路中进行的信息处理的模型。神经细胞由称为细胞体的主体、从细胞体延伸出来的树突和连接到其他细胞的轴突组成。轴突的末端附着在其他神经细胞的树突上,轴突与其他神经细胞的连接处称为突触。树突接收来自其他细胞和感觉细胞的输入信号,信号在细胞体内进行处理,并通过轴突和突触将输出信号发送给其他神经元(图2(a))。 据称大脑中的神经元数量约为 10^10 到 10^11。通过结合这些细胞,每个神经元以并行和分布式的方式处理信息,从而产生非常复杂和先进的处理。一个细胞的输出通过突触传递到其他细胞,通过轴突可以分支成数十到数百个神经元。单个细胞具有的突触连接数量从数百个到数万个不等。所有这些突触连接都有助于神经元之间的信号传输。 当一个信号从另一个神经细胞到达一个神经细胞时,膜电位会因信号而发生变化,当信号超过一定的阈值时,电位就变为正值,神经细胞就会兴奋。然后它向其他神经元发送信号。无论输入值如何,该图的形状几乎都是相同的波形,一旦超过阈值,就会产生恒定形状和幅度的电脉冲。因此人们认为,神经网络中承载信息的不是电脉冲的波形,而是电脉冲的频率(图2(b))。 细胞体的阈值函数,当输入高于阈值时,发出电脉冲,当输入低于阈值时,不发出电脉冲,具有从输入到输出的非线性转换效果。此外,还有兴奋性突触,它会释放使输入神经细胞更容易兴奋的递质,还有抑制性突触,它会使输入神经细胞更不容易兴奋。接收输入神经元可以被认为是接收来自每个输出神经元的输入的总和。 神经网络的数学模型源于对神经元的观察。 1943年,McCullough和Pitts提出了正式的神经元模型。图 2(c)中的圆圈表示一个神经元的模型。 xk 取值 0 和 1,表示该神经元接收的突触数量。
di效力MRI利用水分子不同的运动来创建反映生物组织微结构的图像,以类似于虚拟活检的非侵入性方法。最初通过实现早期诊断和有效的干预措施,这种创新最初彻底改变了急性脑缺血的管理。随着时间的流逝,DI效率MRI已成为临床和研究环境中的基石,为组织完整性,结构异常和早期发现其他模式的变化提供了关键的见解。它在研究和医学方面有广泛的应用,尤其是在神经病学和肿瘤学用于癌症检测和治疗监测中。在不同的使用成像中的显着开发是二量张量成像(DTI),它允许在3D中映射脑白质连接。该技术在开放精神病学的新研究途径的同时,对脑部疾病,神经发生和衰老提供了更深入的了解。概括,扩散框架还将大脑功能和相对论理论的概念联系起来,提出意识是从大脑的4D连接组中作为5D全息构造而产生的,将神经活动与相对论的时空框架融合在一起。这些关键概念即将使用新开发的11.7T MRI扫描仪探索,从而实现了人脑的介绍成像。该扫描仪已成功捕获了大脑的体内图像前所未有的,没有观察到不良影响。这一突破为神经科学社区提供了一种强大的工具,可以以新的规模研究神经退行性和精神疾病。通过促进我们对大脑结构和功能的理解,该项目表明了超高领域MRI解决脑部疾病复杂性的潜力,从而进一步促进了科学知识和医学实践。
- 细胞生物学技术(动态质量重新分布,Flex Station II,BRET钙动员测定法)。- DSRNA的合成用于RNA干扰和基因静音 - 质粒载体的构造,克隆过程以及在细菌和细胞系中重新组合的蛋白质的表达。•生物分子和细胞科学硕士学位(LM6)Ferrara大学,于2014年7月16日获得。参加国会和研讨会•2018年(7月)欧洲昆虫学大会(ECE 2018) - 那不勒斯(意大利)。贡献了三张海报:“斑点果蝇(果蝇果蝇)的章鱼胺/泰兰受体受体的克隆,分子表征和组织表达。” “开采基因在lobesia botrana(Denis和Schiffermüller)的脱氧基因抗性中的挖掘基因通过从头转录组组装和差异表达分析进行的。” “梨psylla cacopsylla pyri的垫子行为和双模式通信。” •2019年(7月)国际分子昆虫科学专题讨论会 - 西班牙(西班牙)。用两张海报做出的贡献:“山地植物可以调节苏木果果蝇(DSTAR1)中的1型酪氨酸受体:新型生物农药的分子和药理方面。” “来自棕色的臭臭虫Halyomorfha Halys的1型酪氨酸受体(TAR1):表征生物农药的新靶标。” •2019年(12月)欧洲博士网络“昆虫科学”,X年度会议 - 热那亚(意大利)。贡献“登革热载体中的章鱼和泰氨带受体,埃及埃及”的贡献。 •2022年(11月)美国昆虫学学会 - 温哥华(加拿大)。prothuto con una thra raale orale:“植物性昆虫卤素形halys的1型酪胺受体(TAR1)的分子表征和药理特征。” •2022(6月)昆虫生物技术会议 - 加拿大湖上的尼亚加拉。contruto con una restrazione orale:“泰拉米蛋白能信号通路参与调节chagas疾病矢量rohodnius prolixus中的卵产量”,监督di Studenti di Studenti di 8 tesi da corlelatore:
1 Alexey Dosovitskiy、Lucas Beyer、Alexander Kolesnikov、Dirk Weissenborn、Xiaohua Zhai、Thomas Unterthiner、Mostafa Dehghani、Matthias Minderer、Georg Heigold、Sylvain Gelly、Jakob Uszkoreit、Neil Houlsby “一张图片胜过 16X16 个单词:用于大规模图像识别的 Transformers” arXiv:2010.11929v2 [cs.CV] 2021 年 6 月 3 日