注意:本稿件由 UT-Battelle, LLC 撰写,合同编号为 DE-AC0500OR22725,与美国能源部签订。出版商接受发表本文,即承认美国政府保留非独占、已付费、不可撤销的全球许可,可出于美国政府目的出版或复制本稿件的已出版形式,或允许他人这样做。能源部将根据 DOE 公共访问计划 (http://energy.gov/downloads/doe-public-access-plan) 向公众提供这些联邦资助研究的成果。
钙钛矿表面很少是化学计量的,通常是排便的。3个钙钛矿表面的缺陷可能会引起显着的非放射电荷重组,并使太阳能电池性能恶化。3 - 7尤其是在最新的太阳能电池中,与散装或晶界相比,钙钛矿和电荷传输层之间的界面的非放射性重组是主要的。4因此,界面缺陷的钝化对于实现高效率PSC是关键。为此,已经报道了许多钝化方法,例如,通过添加小分子,聚合物和无机化合物的层间或掺入宽频段间隙2D perovskites。8 - 11尽管对太阳能电池效率有所改善,但仍然关注这些方法的可观性。最近,宽频段氧化物的原子层沉积(ALD)(例如al 2 o 3)已成为一种有前途的钝化钙钛矿表面的有希望的策略。12 ALD是一种可伸缩的蒸气 - 相薄 - LM沉积技术,它依赖于序列的交替自限制表面反应,它以在具有原子厚度和 lm厚度控制的表面上产生高度均匀的连形薄lms而闻名。
4. Tu, Q.; Spanopoulos, I.; Hao, S.; Wolverton, C.; Kanatzidis, MG; Shekhawat, GS; Dravid, VP, 探究二维混合有机-无机钙钛矿中的应变诱导带隙调制。ACS Energy Letters 2019, 4 (3), 796-802。5. Zhu, C.; Niu, X.; Fu, Y.; Li, N.; Hu, C.; Chen, Y.; He, X.; Na, G.; Liu, P.; Zai, H., 钙钛矿太阳能电池中的应变工程及其对载流子动力学的影响。Nature communications 2019, 10 (1), 1-11。6. Ghosh, D.; Acharya, D.; Zhou, L.; Nie, W.; Prezhdo, OV; Tretiak, S.; Neukirch, AJ,混合钙钛矿中的晶格扩展:对光电特性和电荷载流子动力学的影响。物理化学快报 2019,10 (17),5000-5007。7. Nishimura, K.;Hirotani, D.;Kamarudin, MA;Shen, Q.;Toyoda, T.;Iikubo, S.;Minemoto, T.;Yoshino, K.;Hayase, S.,Sn-钙钛矿太阳能电池的晶格应变与效率之间的关系。ACS 应用材料与界面 2019,11 (34),31105-31110。8. Zhao, J.;Deng, Y.;Wei, H.;Zheng, X.;Yu, Z.;Shao, Y.;Shield, JE; Huang, J., 应变混合钙钛矿薄膜及其对钙钛矿太阳能电池固有稳定性的影响。Science advances 2017, 3 (11), eaao5616。9. Liu, Y.; Collins, L.; Proksch, R.; Kim, S.; Watson, BR; Doughty, B.; Calhoun, TR; Ahmadi, M.; Ievlev, AV; Jesse, S.; Retterer, ST; Belianinov, A.; Xiao, K.; Huang, J.; Sumpter, BG; Kalinin, SV; Hu, B.; Ovchinnikova, OS, CH3NH3PbI3 钙钛矿中铁弹孪晶畴的化学性质。Nature Materials 2018, 17 (11), 1013-1019。10. Bush, KA; Rolston, N.; Gold-Parker, A.; Manzoor, S.; Hausele, J.; Yu, ZJ; Raiford, JA; Cheacharoen, R.; Holman, ZC; Toney, MF,钙钛矿薄膜形成过程中控制薄膜应力和起皱。ACS Energy Letters 2018, 3 (6), 1225-1232。11. Rolston, N.; Bush, KA; Printz, AD; Gold ‐ Parker, A.; Ding, Y.; Toney, MF; McGehee, MD; Dauskardt, RH,钙钛矿太阳能电池中的工程应力以提高稳定性。Advanced Energy Materials 2018, 8 (29), 1802139。12. Liu, Y.; Ievlev, AV; Collins, L.; Belianinov, A.; Keum, JK; Ahmadi, M.; Jesse, S.; Retterer, ST; Xiao, K.; Huang, J., 金属卤化物钙钛矿中的应变-化学梯度和极化。先进电子材料 2020,6 (4),1901235。 13. Jacobsson, TJ;Schwan, LJ;Ottosson, M.;Hagfeldt, A.;Edvinsson, T.,利用 x 射线衍射确定甲基铵铅钙钛矿中的热膨胀系数并定位温度诱导的相变。无机化学 2015,54 (22),10678-10685。 14. Rolston, N.;Bennett-Kennett, R.;Schelhas, LT;Luther, JM;Christians, JA;Berry, JJ;Dauskardt, RH,关于“光诱导晶格膨胀导致高效率钙钛矿太阳能电池”的评论。 Science 2020, 368 (6488)。15. Tsai, H.;Asadpour, R.;Blancon, J.-C.; Stoumpos, CC; Durand, O.; Strzalka, JW; Chen, B.; Verduzco, R.; Ajayan, PM; Tretiak, S.,光诱导晶格膨胀可实现高效钙钛矿太阳能电池。Science 2018,360 (6384),67-70。16. Tsai, H.;Nie, W.;Mohite, AD,对“光诱导晶格膨胀可实现高效太阳能电池”评论的回应。Science 2020,368 (6488)。17. Liu, Y.;Ievlev, AV;Collins, L.;Borodinov, N.;Belianinov, A.;Keum, JK;Wang, M.;Ahmadi, M.;Jesse, S.; Xiao, K., 有机-无机杂化钙钛矿中的光-铁相互作用。先进光学材料 2019, 7 (23), 1901451。18. Zhou, Y.; You, L.; Wang, S.; Ku, Z.; Fan, H.; Schmidt, D.; Rusydi, A.; Chang, L.; Wang, L.; Ren, P., 有机-无机铅卤化物钙钛矿中的巨光致伸缩。自然通讯 2016, 7 (1), 1-8。
B化学与化学生物学系B化学与生物工程系,伦斯勒理工学院,Troy,Troy,纽约12180,美国
摘要 金属卤化物钙钛矿基纳米结构、纳米片和纳米颗粒处于最前沿,具有吸引人的光电特性,适用于光伏和发光应用。因此,全面了解这些基本的电子和光学特性是充分利用此类半导体技术的关键一步。迅速发展的化学工程及其不同寻常的结构多样性令人着迷,但对于与传统半导体相媲美的合理描述也具有挑战性。从这个意义上说,基于群论的对称性分析提供了一种通用而严格的方法来理解各种块体钙钛矿和钙钛矿基纳米结构的性质。在本文中,我们使用群论中的对称性分析回顾了金属卤化物钙钛矿半导体的电子和光学响应,回顾了 AMX 3 块体钙钛矿的典型立方 Pm-3m 晶格的主要结果(其中 A 为阳离子,M 为金属,X 为卤化物),然后将分析扩展到三种技术感兴趣的情况:AMX 3 纳米粒子、A 4 MX 6 孤立八面体、A 2 MX 4 层状系统和最近引入的缺陷卤化物钙钛矿 (d-HP)。基于对称性论证,我们将强调这些材料的电子和光学特性的相似性和差异性,这是由空间限制和维数引起的。同时,我们将利用这种分析来讨论文献中的最新结果和争论,如钙钛矿纳米粒子和纳米片的带边激子精细结构中暗/亮态的能量学。从目前的工作中,我们还预测 d-HP 的带边激子精细结构不会呈现光学暗状态,与 AMX 3 纳米粒子和层状钙钛矿形成鲜明对比,这一事实可能对这些新型钙钛矿的光物理产生重要影响。
摘要 金属卤化物钙钛矿是一类因具有优异的光电性能而成为光电探测器和太阳能电池的理想材料。它们的低成本和低温合成特性使其在旨在彻底改变半导体工业的广泛研究中具有吸引力。金属卤化物钙钛矿的丰富化学性质使其可以通过成分工程轻松调整所需的光电性能。此外,使用不同的实验合成和沉积技术,如溶液处理、化学气相沉积和热注入方法,钙钛矿的维度可以从 3D 改变为 0D,每种结构都因其独特的性质而开辟了新的应用领域。维度工程包括形态工程(将 3D 钙钛矿的厚度降低为原子薄膜)和分子工程(将长链有机阳离子掺入钙钛矿混合物中并在分子水平上改变组成)。钙钛矿结构的光电特性包括其带隙、结合能和载流子迁移率,取决于其组成和维度。本文将回顾使用不同成分和尺寸的钙钛矿制成的大量光电探测器和太阳能电池。最后,我们将讨论不同维度的动力学和动力学、其固有的稳定性和毒性问题,以及如何在较低维度上达到与 3D 类似的性能以及如何实现大规模部署。
近十年来,卤化物钙钛矿得到了广泛的研究,部分原因是钙钛矿基太阳能电池的能量转换效率得到了前所未有的快速提高。除了太阳能电池之外,基于钙钛矿的光电器件如光电探测器和发光器件也已展示出令人印象深刻的性能,这得益于大的吸收系数、可调的带隙、缺陷容忍度和长的载流子扩散长度。尽管这些领域已经取得了重大进展,但是包括长期稳定性和铅的毒性在内的一些挑战极大地限制了它们的商业化。人们已经付出了巨大的努力,从光物理的基本理解、材料工程和性能优化等方面来解决这些长期存在的问题。本期特刊以“卤化物钙钛矿:从材料到光电器件”为主题,包括一条评论、四篇综述和五篇原创研究文章,涵盖了所有提到的主题。在本期特刊中,熊等人。来自新加坡南洋理工大学的李建军等 [1] 深入评述了基于钙钛矿的激子极化玻色-爱因斯坦凝聚态的研究现状和未来的研究方向。Koleilat 等 [2] 详细总结了维度工程包括形态工程和分子工程如何影响它们的带隙、结合能和载流子迁移率,从而影响光电探测器和太阳能电池的性能。李等 [3] 综述了二维钙钛矿中自陷激子的研究进程,包括自陷激子的起源,如何检测和控制自陷激子以及自陷激子的存在如何影响钙钛矿基光电器件的性能。唐等 [4] 详细评述了自陷激子在钙钛矿中的研究进展,包括自陷激子的起源,如何检测和控制自陷激子以及自陷激子的存在如何影响钙钛矿基光电器件的性能。 [4] 收集了钙钛矿基发光二极管的外量子效率、亮度和稳定性状态等性能矩阵,向读者简要而全面地介绍了该领域。陈等 [5] 总结了下一代硅基串联太阳能电池的可能顶部电池,并进一步提出了有希望的候选顶部电池。梅等 [6] 通过一种简单的一步滴涂法探索了前体浓度如何影响可印刷无空穴导体介观钙钛矿太阳能电池的性能;游等 [7] 通过使用无掺杂聚合物聚(3-己基噻吩-2,5-二基)(P3HT)作为空穴传输层,研究了无机钙钛矿太阳能电池的性能和热稳定性。钟等[8] 采用刮刀涂布法制备宽带隙甲脒溴化铅薄膜,并研究表面活性剂种类对基于所制备薄膜的太阳能电池性能的影响。魏等。[9] 展示了如何通过复合工程制造高效的钙钛矿基发光二极管。Mu 等人 [10] 提出了一种电晕调制装置结构,以在电子束激发下实现钙钛矿量子点中的随机激光发射。本期特刊中出现的十篇文章仅涵盖了这个快速发展的钙钛矿社区最新进展的一小部分。我们希望本期特刊能为卤化物钙钛矿社区提供有用的参考,并激发这些研究领域的更多研究。
光电探测器是指能够将入射光转换为电信号的光电子器件,是环境监测、消防和安全、光通信、太空探索和视频成像等多个领域的重要功能元件[1,2]。光电探测器采用了不同类型的半导体材料,例如GaN、InGaAs、Si、ZnO、碳纳米管、共轭聚合物和量子点[3]。基于这些材料的器件需要复杂而昂贵的制造成本和机械刚性。在过去的十年中,金属卤化物钙钛矿材料因其在光伏和光电子器件中的广泛应用而引起了研究人员的极大兴趣[4]。由于其突出的高性能、低成本和溶液可加工性,这类材料已经成为未来大量光伏和光电子器件的潜在候选材料[5]。在众多可用的金属卤化物中,甲基铵碘化铅 (MAPbI 3 ) 已被广泛研究用于光伏和光传感应用 [ 6 ]。事实上,钙钛矿材料在光伏器件中已经实现了显著的效率,但这些太阳能电池
卤化物钙钛矿构成了新兴材料类别的基础,用于在可再生和可持续应用中进行广泛应用,包括光催化和太阳能收集。这些材料具有有益的光物理特性,包括适合太阳能收集的带镜和有效的电荷筛选,这些筛选是有效的电荷载体分离和对缺陷的阻力的基础。对于有机 - 无机杂化钙化物,这些益处被认为是由于偶极分子阳离子而产生的,这些阳离子可以响应带电的颗粒和缺陷而重新定向。在这项工作中,我们为无机金属卤化物钙钛矿提供了类似的观点,这些卤化物钙质不包含带有永久偶极子的分子物种。我们讨论了孤对电子如何导致与传统分子塑料晶体和杂化钙钛矿相比表现出动力学的偶极离子。我们认为,使用第一原理模拟和同步加速器散射的这些电子塑料晶体运动可以进一步理解对金属卤化物perovskites的光物理特性的基本理解,并为高级功能材料的设计提供了信息。