摘要:人工智能技术作为新兴技术革命和畜牧业革命的重要力量,在我国畜牧业数字化、信息化、智能化进程中发挥着至关重要的作用。人工智能技术的应用涵盖动物饲料配方与生产管理、动物饲养环境监测与调控、动物健康管理等多个领域,并已取得初步成效。人工智能通过大数据分析和机器学习算法实现精准饲料配方,提高营养水平和生产效率;利用传感器和物联网技术对饲养环境进行实时监测与调控,改善动物生长环境;利用生物识别技术实现动物健康监测预警,提高管理水平。目前,智能监测技术已应用于放牧羊福利研究,主要包括音频分析、视觉检测、行为监测、行为特征识别、卫星定位、无人机巡航等关键技术。尽管智慧畜牧面临多视角、多尺度、多场景、小样本等挑战,但人工智能技术在畜牧业的应用显著提高了生产效率和管理水平,相比传统技术优势更加显著。
该研究的意义在于需要使用无人机 (UAV) 来完成石油和天然气工业的工程和大地测量任务。使用无人机进行机载摄影测量是目前大地测量领域的一项先进技术,它取代了视距测量、RTK 模式下的卫星定位、载人航空摄影和机载激光扫描 (ALS) 等方法。如今,无人机在石油和天然气工业中的应用潜力非常巨大。许多安全性和可靠性问题过去一直是石油和天然气公司的成本负担,而使用无人机可以有效解决这些问题。该研究包括使用三个不同自动化程度的现代软件包(Agisoft Photoscan Professional,v 1.2.5.2594(俄罗斯)、ERDAS IMAGINE,v 2015(美国)和 Pix4Dmapper Pro(瑞士))处理从无人机综合体获得的数据;通过将地形图叠加在所考虑领土上比例为 1:500 的正射影像上,在 ArcMap 软件中评估精度;计算经济和劳动力成本。作为研究的一部分,证明了无人机的使用不仅可以用于大地测量工作,还可以用于解决石油和天然气行业其他同样重要的任务,从而降低经济和环境风险,实现与石油设施监测相关的流程自动化,防止非法管道连接企图和石油泄漏。此外
自 1993 年本书第一版出版以来,个人计算机发生了巨大的变化。当时,5-1/4 英寸软盘驱动器还很常见,Intel 80386 是一种热门处理器,Windows 或其他操作系统是否会主导 PC 还不得而知。真的。第一版中甚至没有提到,而且在第二版中只用了几章来介绍互联网,而现在它已经成为一个完整的部分,并且内容逐年增加。本期所涵盖的许多主题在当时都是无法想象的 — — 气体等离子显示器、互联网视频和音频、可重写 DVD 驱动器、加速 3D 图形、通用串行总线、全球卫星定位,以及计算机 — — 真正的计算机,而不是玩具 — — 可以放在衬衫口袋里,还可以在上面写字。如果当时人们想象过与计算机对话之类的事情,那也只是科幻小说中的东西,是未来的事情。好吧,明天已经到来了。 PC 的变化如此迅速、如此广泛、如此细致,如果没有许多知识渊博的人的帮助,我永远不可能了解新技术背后的技巧。他们不仅慷慨地分享知识,而且耐心地向我解释,直到我的大脑 LED 亮起来。我有幸在 1989 年推出了 PC 计算中的“工作原理”专栏,但多年来,许多人都在研究它。
使用实时差分 GPS 监测高层建筑 Victor H.S.KHOO, Yam Khoon TOR 和 Gerry ONG,新加坡 关键词:全球定位系统 (GPS)、差分 GPS (DGPS)、结构监测、实时动态 (RTK)、GNSS、CORS、VRS 摘要 新加坡的高层建筑和结构经常受到印度尼西亚苏门答腊岛和爪哇岛地震的影响。目前,没有实时监测方案来协助当局在地震期间和之后做出决策。在损害评估中,当局仅在地震后进行目视检查。无法确定建筑物/结构的偏转(谐波运动)的幅度。新加坡卫星定位参考网络 SiReNT 系统由新加坡土地管理局 (SLA) 于 2006 年 9 月实施。该 CORS 系统已运行近 3 年,并已获得广泛认可,成为新加坡权威的差分 GPS (DGPS) 基础设施。覆盖全国的 SiReNT 是提供高精度定位和监测参考的理想且具有成本效益的系统。用户群已增长到一百多个,应用范围包括土地测量、测绘、GIS 数据采集和工程定位。提出了概念验证 (POC) 来展示由 SiReNT 支持的 VRS-RTK(虚拟参考站 - 实时动态)服务在检测(监测)地震期间的偏转方面的能力。这项研究是在新加坡最高的三座建筑之一上进行的,目的是实施可靠而强大的差分 GPS (DGPS) 监测系统,该系统将提供被监测建筑的准确、实时的结构稳定性信息。将测量建筑物的幅度(位移),这些信息将帮助建筑物所有者(或建筑物经理)实时做出快速准确的决策。这项研究是与南洋理工大学 (NTU) 和 GPS Lands Pte Ltd. 合作进行的。本文将重点介绍实时系统的架构、设计和结果。
学生,法里达巴德德里公立学校 摘要 本研究论文探讨了人工智能对空间技术的影响。本文研究了人工智能在航天工业中的当前应用、潜在的好处和挑战以及这种变革性技术的未来影响。众所周知,太空探索领域存在许多障碍,人工智能可以帮助克服其中一些挑战并推动航天工业向前发展。人工智能有可能彻底改变太空探索的各个方面,从任务规划和航天器操作到数据分析和科学发现。本文讨论了它的潜力以及未来可能的发展。 关键词:人工智能 (AI)、空间技术、太空探索 介绍 太空探索长期以来一直是人类最雄心勃勃的事业之一,推动了许多领域的技术创新。从 1957 年发射第一颗卫星 Sputnik 1 到人类登月和正在进行的火星探索,太空技术不断发展。近年来,人工智能 (AI) 已成为太空探索和技术领域的一股颠覆性力量。人工智能能够自动执行复杂任务、处理大量数据集,并在人类无法接近或无法进入的环境中发挥作用,现在正被用于探索太空的新领域。如今,人工智能 (AI) 正在推动下一个太空创新时代。人工智能能够在人类干预有限的环境中处理大型数据集、进行预测和自主执行任务,这对航天工业来说是无价的。本研究论文探讨了人工智能对空间技术日益增长的影响,包括其在卫星技术、太空探索、任务规划和行星科学中的应用。卫星技术中的人工智能卫星是现代空间基础设施的重要组成部分,可实现全球通信、导航、天气预报和地球观测。人工智能正在以多种方式改变卫星技术。人工智能算法可用于优化卫星设计、增强机载处理并改善卫星定位和控制。A. 自主导航和控制:传统卫星通常需要不断的人为干预
2。背景和理由农业是人类最古老,最重要的经济活动,为促进人类生存提供了必要的寄托。随着全球人口的增长,压力正在超越农业部门,以满足对农产品的需求增加,同时保留环境和生态健康。考虑到有限的土地,水和劳动力资源,农业的必要进步可能必须围绕效率和生产力提高而定向,以解决面临的不断增长的压力。1农业机器人技术是指使用自动机械和高级技术,例如机器人,无人机和AI驱动的系统来执行农业和农业的任务。机器人系统已成为农业部门的中流台,使农民的产出水平远大于仅与人类劳动力合理的产出水平。机械化大大提高了农民的能力以及他们在给定时期内可以管理的土地数量。传统上,农民将机器人用于简单,重复性的任务,例如采摘,包装水果和蔬菜或种植种子 - 由于工作的艰苦性和相关的低补偿,这些工作挑战很大,以及机器人可以以成本效益的价格解决的工作。随着跨机器人技术和AI的进步,此类系统越来越能够执行更复杂的任务。因此,正在进行被剥削的机器人系统中较高智能的过渡正在进行中。为执行此类功能,使用了各种类型的农业机器人。机器人可解决的任务的曲目现在涵盖了广泛的功能,例如种植,收获,除草,喷涂,土壤监测,养成牲畜的倾向和精确耕作,通常比传统的手动劳动更高,效率和准确性。配备高级传感器和AI的铰接式机器人能够微妙地处理某些水果和蔬菜,从而可以自动收获。用精密GNSS(全局导航卫星系统)接收器固定的自主拖拉机可以自主浏览字段,执行诸如耕作,播种和耕作之类的任务。无人机非常适合诸如空中作物监测和测量大型领域等任务,以获得营养健康,昆虫问题等。它们也可以用于灌溉管理和应用农业药物,利用卫星定位用于导航无人机,以及
卫星大地测量法在测地学、测量工程和相关学科中得到越来越广泛的应用。特别是,现代精确和实用的卫星定位和导航技术的发展已经进入了地球科学和工程的所有领域。新的和即将发射的卫星任务以及对地球在太空中自转的监测对精细结构重力场模型的需求也日益增长。多年来,我一直觉得确实需要一本涵盖整个主题的系统教科书,包括其基础和应用。我希望这本书至少能在一定程度上满足这一要求。这里介绍的材料部分基于汉诺威大学自 1973 年以来教授的课程和国外客座讲座。我希望这些材料可以用于其他大学的类似课程。本书主要面向大地测量学、测量工程、摄影测量、制图学和测绘信息学领域的高年级本科生和研究生。本书还旨在为对卫星大地测量方法和结果感兴趣并需要了解最新发展的专业人士提供信息来源。此外,本书还面向工程和地球科学相关领域的学生、教师、专业人士和科学家,如陆地和空间导航、水文学、土木工程、交通管制、GIS 技术、地理、地质、地球物理学和海洋学。为了实现这一目标,本书的性质介于教科书和手册之间。所需背景是本科数学和初等数理统计水平。由于该领域的快速和持续发展,有必要进行选择,并给予某些主题比其他主题更大的权重。本书特别重视基础知识和应用,尤其是使用人造卫星确定精确位置。本书还添加了全面的参考文献列表,以便进一步阅读,从而促进更深入和更高级的研究。本书第一版于 1993 年出版,是 1989 年以德文出版的《Satellitengeodäsie》一书的英文翻译和更新版。目前的版本经过了彻底的修订和显著的扩充。本书保留了第一版的基本结构,以促进教学的连续性;但是,删除了过时的材料并添加了新材料。所有章节都已更新,有些章节已重写。总体状态为 2002 年秋季,但已包含截至 2003 年 3 月的一些最新技术发展。扩展和更新主要涉及参考坐标系和参考框架[2.2]、信号传播[2.3]、CCD 技术的方向[5.2]、全球定位系统 (GPS) 和 GNSS [7]、卫星激光测距[8]、卫星
以及用于土地管理和网络地理数据使用的地理门户网站。她的科学训练始于水力学学科,她的学位和博士论文专注于河流形态动力学问题。然后,她将注意力转向监测河流环境,并解决了测量领土的问题以及对观测数据进行统计处理的数学方法。因此,研究重点是研究一种实验方法,该方法可以应用于河床的短期和长期监测,从而可以对有限面积的区域进行快速且廉价的调查。特别是,解决了实现 DTM(数字地形模型)的插值问题和插值参数的相对校准分析,通过使用 GIS 档案和分析工具根据测量活动本身分析的信息调整调查。因此,研究活动转向使用 GNSS 技术进行调查,该技术特别适合在紧急情况下进行环境监测,以支持永久站。特别是,设计了一个永久性 GNSS 站,用于持续的地球动力学监测,特别关注与安装天线的岩石纪念碑有关的技术和科学方面。同时,还开展了一项研究,以建立遍布利古里亚的永久卫星定位站网络。为此,计划了两次实时 GPS (RTK) 测量活动,参考伦巴第和皮埃蒙特的区域网络,以评估 RTK 测量对被测点位置的影响,参考网络本身的空间布局。此外,利用 GIS 和 DBMS 工具在空间分布数据管理和分析方面的潜力,解决了一些土地管理方面的问题,实施了适当的 GIS 程序,用于研究不透水环境中的领土可达性,制作河流洪水和海啸风险倾向图,评估降雨引发的山体滑坡的敏感性,评估真实的卫星可见性,即自动确定从数字表面模型 (DSM) 获得的障碍物,作为规划 GNSS 调查(包括静态和移动车辆)的支持工具,用于分析物流区域的防撞风险,评估 GNSS 对预测强烈气象事件的贡献,以及用于潜在近海养鱼场的 DSS 系统。目前的研究方向是:对大面积复杂地形区域的强降雨进行定位,有助于预测预警状态;建立综合模型,用于低成本监测降雨引发的山体滑坡;利用卫星技术对平均海平面研究做出贡献;在物流港区对移动车辆进行精确、低成本的定位,并结合实时防撞算法;在紧急情况下使用无人机进行摄影测量,并对移动车辆进行激光扫描,从而实现 3D 测量。
奥克西塔尼大区是空中客车防务与航天公司、法国国家空间研究中心图卢兹航天中心和北约空间卓越中心等所在地,2024 年 10 月 2 日至 3 日,该大区将欢迎 NEREUS 成员和嘉宾来到图卢兹参加 NEREUS 地区举办的第三届欧洲年度研讨会。该研讨会由 NEREUS 成员设计并为其服务,通过征集最佳实践而召集起来。在这些贡献之前,本概念说明旨在为可能的主题和方法提供指导。专门讨论水和能源主题的研讨会:为支持绿色协议走向本地议程及其区域“新绿色协议”,奥克西塔尼大区提议将水和能源作为 2024 年研讨会的两个主题。这符合联合国可持续发展目标 6(清洁水和卫生设施)和 7(清洁和负担得起的能源)。水和能源管理在绿色和气候转型中发挥着重要作用,同时也受到气候变化的影响,给领土、生物多样性和经济带来了令人痛心的后果。这些全球性挑战影响着 NEREUS 成员中各个不同的经济体和领土。研讨会旨在提出由 NEREUS 成员提出的制定和管理水和能源政策的创新解决方案。目的是将公共政策管理者(来自地区和地方政府的水和能源主管部门)和服务提供商(公司、初创企业、研究组织和大学)聚集在一起讨论空间解决方案。水的空间应用:防洪、干旱、灌溉养殖、水生环境、水质、泄漏:地区管理者在水管理领域面临的挑战是多种多样的。数据有助于更好地理解和更有效地管理这一重要战略资源。许多空间技术解决方案已经存在或正在开发中,以支持这一关键的公共服务。例如,目前正利用地球观测、卫星定位和卫星通信来更好地了解全球范围内的水循环,并观察河流流域以减轻洪水风险。能源的空间应用:能源管理是公共管理者的一项重要任务,从减少能源消耗到降低能源结构的碳排放,再到维护能源基础设施。正如智慧城市运动所证明的那样,数据分析和使用有助于做出明智的决策。地球观测数据还可以用于领土管理(例如识别热岛和热损失)、关键能源基础设施监测以及确定可再生能源生产的最佳地点。实地考察:作为欧洲航天工业的摇篮,奥克西塔尼大区期待展示其独特的生态系统,并共同探讨航天工业的未来。 临时计划 10 月 2 日星期三 上午 9 点:欢迎致辞 上午 10 点:全球挑战:太空政策的未来已经开始 上午 11:30:公共管理人员面临的水资源管理挑战 下午 12:45:午餐休息 下午 2:45:水资源管理的创新解决方案 下午 5:15:能源管理介绍 晚上 8:00:晚宴