金黄色葡萄球菌CAS 9(SACAS 9)是RNA引导的内核ASE,其靶向与原始探针相邻的互补DNA相邻的邻接基序(PAM)进行裂解。其小尺寸促进了体内递送的各种生物体基因组编辑。在此,使用单分子和集合方法,我们系统地研究了SACAS 9与DNA相互作用的基础机理。我们发现SACAS 9的DNA结合和裂解需要分别与指导RNA的PAM -Proximal DNA的6-和18 -bp。这些活性是由三元复合物之间的两个稳定的相互作用介导的,其中一种稳定的相互作用位于PAM的大约6 bp,而不是DNA上Sacas 9的明显足迹。值得注意的是,原始间隔物内部的另一个相互作用显着强,因此构成了DNA结合的SACAS 9持续块对DNA跟踪电动机。有趣的是,在裂解后,萨卡斯9自主释放了pAM-DESTAL DNA,同时保持与PAM的结合。这种部分DNA释放立即废除了其与原始探针DNA的强烈相互作用,因此促进了其随后与PAM的解离。总体而言,这些数据提供了对SACAS 9的动态理解,并指导其有效的应用。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
新加坡是在整个大英帝国发展的广泛交易路线网络中成立的。该定居点的价值在于在欧洲/印度,中国和马来群岛之间的高度战略地位,这是在这些地理子系统中运营的商品和商人最方便的十字路口,而在亚洲荷兰人与英国之间的地理政治相互作用的背景下。的确,它的位置是新加坡增长的唯一资源(Huff 1997,7)。在19世纪初期的特定贸易和地理政治模式中,地理位置的早期优势非常重要,并以自由港口地位的补充,促进了新加坡作为大英帝国和亚洲贸易的主要群体的增长。
1. 引言 最近,美国和法国等国家发布的声明表明,太空现已成为国防战略的明确组成部分。因此,从低地球轨道 (LEO) 到地球同步轨道 (GEO),都需要监控关键资产、控制卫星发射等操作以及识别潜在或主动威胁。这些问题不仅对国防很重要,还可能对民用应用特别重要,例如监控专用卫星(电信、观测和科学任务)、交通处理、碎片识别和跟踪。低地球轨道尤其令人担忧,因为占据这一空间的卫星数量越来越多。借助雷达探测,可以轻松跟踪轨迹,而雷达成像可以提供卫星识别,尽管分辨率有限且成像深度有限 [1]。光学成像可以提供互补的高分辨率图像,并评估卫星的身份、状态、动态及其附近区域的控制。这需要具有快速转向能力的大口径望远镜来跟踪快速移动的目标。然后需要自适应光学 (AO) 来补偿大气湍流。因此,美国已经开发了这一领域的先进资产 [2][3]。本文的目的是展示和讨论使用专用原型获得的结果。我们还介绍了在这个特定框架下进行图像后处理的创新工作。Onera 确实为法国国防部开发了一种自适应光学 (AO) 辅助低地球轨道卫星成像仪原型。该系统还被用于演示低地球轨道卫星对地光通信 [4]。事实上,低地球轨道卫星空对地光通信在类似目标上面临着类似的问题,即使用自适应光学跟踪和补偿湍流。自适应光学台位于法国蔚蓝海岸天文台 (OCA) 的 MeO 望远镜上。考虑到低地球轨道卫星成像或光通信,其性能在很大程度上取决于卫星旋转速率驱动的湍流的快速时间演变。因此,我们开发了一种基于 GPU-CPU 的实时控制器,以减少循环延迟,从而减少时间误差。该控制器还提供了灵活性,以支持部分自动化的实施,以应对快速变化的情况。考虑到卫星成像,后处理也是一个关键问题。因此,我们利用天文学和生物医学成像领域的最新研究成果开发了专用的盲反卷积算法 [5][6][7][8]。我们首先简要介绍 AO 设置。我们讨论了系统要求和 AO 系统设计权衡。然后,我们讨论了后处理并介绍了在民用 LEO 卫星上获得的当前结果。
过去,具有足够成像能力的卫星解决方案对于许多行业来说成本过高,而且无法提供真正有用的持久覆盖范围。L3Harris 长期以来一直生产一些最值得信赖的太空“眼睛”,它通过重新设计其高端光学器件、专利结构和出色的图像质量产品来满足这一需求,从而生产出 SpaceView 系列高性能成像有效载荷。SpaceView 系统专为小型卫星群量身定制,以实惠的价格实现更快的重访率和更大的覆盖范围——同时仍能提供关键情报。
摘要 精准农业的核心概念是管理田间土壤和作物生长的变化,以更有效地利用农业投入。自 20 世纪 80 年代中后期农业技术开始发展以来,遥感一直是精准农业不可或缺的一部分。地面平台、载人飞机、卫星以及最近的无人机上搭载的各种类型的遥感器都已用于精准农业应用。自 20 世纪 70 年代以来,最初的卫星传感器(如 Landsat 和 SPOT)已广泛用于大面积地理区域的农业应用,但由于其空间分辨率相对较粗且重访时间较长,因此在精准农业中的应用有限。高分辨率卫星传感器的最新发展大大缩小了卫星图像和机载图像之间的空间分辨率差距。自 1999 年第一颗高分辨率卫星传感器 IKONOS 发射以来,已有许多商用高分辨率卫星传感器问世。这些成像传感器不仅可以提供高空间分辨率的图像,还可以重复查看同一目标区域。高重访频率和快速数据周转时间,加上其相对较大的空中覆盖范围,使高分辨率卫星传感器对包括精准农业在内的许多应用具有吸引力。本文将概述市售的高分辨率