Visvesvaraya技术大学(VTU),以Bharat Ratna Dr。 M. Visvesvaraya爵士根据卡纳塔克邦政府1994年的VTU法案,于1998年4月1日成立。这所大学是为了促进技术教育,研究,创新和外展计划的计划和可持续发展。大学对整个卡纳塔克邦有管辖权。t的总部位于贝拉加维,为了平稳的行政活动,在班加罗尔(Muddenahalli),Mysuru,Kalaburagi和Belagavi建立了四个地区办事处。大学主校园位于贝拉加维,被恰当地称为“ Jnana Sangama”,“知识的融合”。“ jnana sangama”校园分布在116英亩的宁静氛围上,具有现代的建筑优雅和美丽。
本文旨在分析两种可能的系留卫星系统架构的性能,这些系统用作分布式雷达探测仪的平台。第一种架构是横向轨道定向的系留卫星系统,利用与低地球轨道稀薄大气相互作用产生的空气动力进行控制和稳定。第二种架构涉及通过陀螺稳定控制的系留卫星系统,通过使系统围绕轨道平面内的轴旋转来实现。在简要介绍雷达探测技术之后,介绍了描述系统几何形状及其特性的方法,然后将这两种架构的性能相互比较并与当前最先进的技术进行比较。通过分析建模的标称行为,结果表明,这两种提出的架构可以在一个轨道内分别以最大横向轨道分辨率实现连续或多次观测,从而最大限度地减少杂波噪声。与通常每条轨道只能实现最多四次观测的编队飞行架构相比,这是一种显著的性能改进。最后研究了每种架构的优缺点,并讨论了其可能的任务场景。
摘要:使用卫星对卫星系统的无线电力传输技术是一种宝贵而便捷的技术,可用于在太空太阳能卫星与卫星之间以及潜在的未来行星际任务之间无线传输电力。这种直接传输可以帮助取代传统的电力储存,减轻卫星的重量,最终降低发射卫星的成本。本文讨论了一颗小型太空太阳能卫星与另一颗运行卫星之间的无线电力传输,随后演示了小型太空太阳能卫星并评估了未来实施的可能性。它将提高性能和使用寿命,尤其是对于使用微波和激光电力传输的小型和立方体卫星。这项技术的开发和演示可以帮助实现太空太阳能卫星向地球传输千兆瓦可再生能源的想法。
10 差旅费 ICG 将向符合条件的国际参与者提供有限的差旅费资助。尼泊尔的参与者不提供国内旅行的差旅费资助。该资助仅涵盖参与者最近的国际机场和加德满都特里布万国际机场之间的往返经济舱机票。所有其他费用(酒店、保险和日常餐饮费用等)必须由参与者支付。当地组织者将提供与签证、酒店预订和其他交通相关事宜相关的后勤支持。但是,所有费用均由参与者承担。
• 如今,全球很大一部分人口的日常生活都涉及通过移动电话、个人电脑和其他电子通信设备共享信息。 • 太空技术,即通信卫星,通过在一个或多个地点之间中继语音、视频和数据信号,使全球电信系统得以实现。 , y • 虽然有时可以使用地球上的太空技术替代方案,但太空技术通常可以减少基础设施要求,并提供更具成本效益的服务交付选项。 • 例如,无需建造一系列传输和中继塔来将电视节目广播到遥远的地方,只需为偏远社区提供一个卫星天线来接收卫星发送的广播信号。
为了与多 GNSS 接收机制造商开展对话,需要对多 GNSS 接收机的时间偏移精度要求进行调查。然而,由于物流和时间表复杂以及成本高昂,很难让全球许多制造商参加授时互操作性研讨会。因此,建议 GNSS 提供商在国内大规模开展调查,并根据调查结果向 ICG 提交报告,以推动 GNSS 时间互操作性的改进。
可以使用在不同频率上运行的多个导航接收器来降低GNS的干扰易感性。频率多样性可以采用相同类型的接收器。减少干扰是在L5 1176.45 MHz(GPS-美国星座)引入和进一步扩展新民用通道的原因之一。使用多结构混合接收器可以提高可用性和可靠性。但是,应评估它们在整个GNSS频率范围内针对宽带干扰的较高成本和有效性。下表总结了减轻GNSS RFI对民航的影响的计划。
1. 引言 全球导航卫星系统 (GNSS) 和相关技术可为 2030 年可持续发展议程作出广泛贡献。GNSS 和地球观测数据目前被广泛应用于各个领域,包括测绘和测量、环境监测、精准农业和自然资源管理、灾害预警和应急响应、航空、海上和陆地运输,以及气候变化和电离层研究等研究领域。GNSS 应用提供了一种在保护环境的同时实现可持续经济增长的经济有效方式。当前的 GNSS 包括全球定位系统 (GPS)、全球导航卫星系统 (GLONASS)、北斗卫星导航系统 (BDS) 和欧洲卫星导航系统 (Galileo)。此外还有两个区域系统,即印度星座导航系统 (NavIC) 系统和准天顶卫星系统 (QZSS),以及旨在提高一个或多个 GNSS 质量(例如准确性、稳健性和信号可用性)的各种增强系统。除了 GNSS,地球观测卫星或通信卫星等其他空间技术在创造社会经济效益方面也发挥着关键作用。地球观测卫星能够持续详细地监测地球表面,为环境保护、资源管理和灾害响应提供宝贵的数据。它们有助于追踪森林砍伐、城市扩张和农业用地变化,并为管理水资源和缓解气候变化提供重要见解
自由空间光学 (FSO) 最早的应用是以火作为发射器,以眼睛作为接收器,进行早已失传的视距 (LOS) 任务。自由空间光通信 (FSOC) 的下一步发展是使用太阳作为发射器,用镜子或屏蔽来调制到达眼睛的光线作为接收器。这是一个基本的通信系统。快进几千年到 1880 年,光电话专利授予贝尔和泰恩特,用于发射器(太阳或碳丝)和接收器(硒传感器)之间的光通信。许多人认为这是光纤和自由空间光通信的先驱。在现代,无线地面和卫星通信基于射频传输,通过有限的频带和开放的传输路径限制带宽和安全性。随着光子学的发展将其足迹扩展到自由空间光学和自由空间光通信,太赫兹传输触手可及。