摘要 — 卫星技术的下一阶段以非地球静止轨道 (NGSO) 卫星的新发展为特征,它带来了令人兴奋的新通信能力,可提供非地面连接解决方案并支持来自各个行业的各种数字技术。与传统的地球静止轨道 (GSO) 卫星相比,NGSO 通信系统具有许多关键特性,例如更低的传播延迟、更小的尺寸和更低的信号损耗,这可能使延迟关键型应用能够通过卫星提供。NGSO 有望大幅提高通信速度和能源效率,从而解决 GSO 卫星商业化的主要阻碍因素,以实现更广泛利用。NGSO 系统有望实现的改进促使本文对最先进的 NGSO 研究进行全面调查,重点关注通信前景,包括物理层和无线接入技术以及网络方面以及整体系统功能和架构。除此之外,NGSO 部署仍有许多挑战需要解决,以确保不仅与 GSO 系统无缝集成,而且与地面网络无缝集成。本文还讨论了这些前所未有的挑战,包括在频谱接入和监管问题、卫星星座和架构设计、资源管理问题和用户设备要求方面与 GSO 系统的共存。最后,我们概述了一系列创新研究方向和未来 NGSO 研究的新机遇。索引术语 — 非地球静止 (NGSO) 卫星星座、非地面网络 (NTN)、卫星通信、空间信息网络、太空互联网提供商、航天器。
* 作者分别在南卫理公会大学和乔治城大学教授航空法和太空法四十余年。他是 PAUL B. LARSEN、JOSEPH C. SWEENEY 和 JOHN E. GILICK 合著的《航空法:案例、法律和相关资料》(第二版,2012 年)和 FRANCIS LYALL 和 PAUL B. LARSEN 合著的《太空法:论文集》(2009 年)。作者的联系方式为 pblspace@aol.com。我参阅《GNSS 在军事事务中的作用(反之亦然)》,INSIDE GNSS(2014 年 5 月/6 月),http://www.insidegnss.com/node/4018。 2 参见 NDP Consulting Grp.,《PNT 咨询委员会寻求 GPS 经济效益详情》,《INSIDE GNSS》(2012 年 8 月 20 日),http://www.insidegnss.com/node/3170 .html。 3 参见 id。军事用途是 GNSS 存在的最初且至今仍十分重要的政策原因。参见《GNSS 在军事事务中的作用》,上文注 1。与民用相比,军事用途较小。参见 NDP Consulting Grp.,上文注 2。Nev-
如今,全球卫星导航系统(GNSS)在许多领域都起着基本作用,例如民航,海上和土地导航和地理器,由于能够在全球范围内提供全球,三维,全天候,速度和速度和时间同步。全球导航卫星系统练习的最终产品是接收站的三维坐标(3D)。这些坐标在大多数地理空间应用中被发现可靠。但是,除了大地坐标外,数据管理中的某些应用还需要其他信息。因此; GNSS已与其他数据获取方法集成在一起,以提高各种应用程序的数据质量。这些有助于解决各个方法失败的许多问题。本文研究了一些基于卫星的系统,并报告了GNSS与其他数据采集工具的集成,例如地球级别,遥感,地理信息系统(GIS),惯性导航系统(INS)等。在某些情况下,协同作用导致了其他卫星或有效载荷计划,例如重力恢复和气候实验(GRACE),而它已改善了许多领域的GNSS应用程序。GNSS集成。
摘要:由于空间粒子的吸收和散射,卫星信号在传播过程中的质量会下降。对于高信息速率卫星技术,这种质量下降会严重影响接收到的信息。这种质量下降还取决于链路和大气损耗。雨水和云对 10 GHz 以上频率的信号衰减有重大影响。在雨水和凝结云层期间,低仰角传输会增加有效路径长度并导致接收信号电平下降。频率 f 和仰角 θ 等发射信号参数的变化会显著影响大气损伤。本文研究了在 10-50 GHz 频率范围内较低仰角下自由空间损耗、雨水衰减和云衰减的影响。链路计算方法用于确定自由空间损耗。ITU-R Rec. P.837-4 和 ITU-R Rec. P.676-11 分别用于计算雨水和云衰减。使用 MATLAB 软件绘制并制表这三种损耗的结果。
今年夏天,两家美国公司进行了处女航班,将其创始人带到80公里以上。这些第一个商业太空旅游的航班只是“报纸”的一个方面:越来越多的公司正在开发并合并新技术以利用太空的商业机会。有些人,例如西班牙的PLD,正在为较便宜的发射器(例如OneWeb)致力于部署大型卫星星座,而另一些则在小行星采矿等越来越有远见的应用程序上再次开发。这些举措并非没有需要解决的问题。如果空中交通对空气污染的贡献是一个问题,那么肯定是为了娱乐的轨道航班。大型卫星星座的发射正在将空前数量的对象插入轨道;这些不仅妨碍了天文观察,而且也极大地增加了现有卫星的碰撞风险。和空间采矿(仍然迄今仍胚胎)已经引发
6.飞行体验 ......................。。。。。。。。。。。。。。。。。。。。。。。。.....33 6.1 磁层多尺度 (MMS) 任务 (美国:NASA)。...........34 6.2 地球静止环境业务卫星 R (GOES-R) 系列 (美国:NOAA、NASA)。。。。。。。。。。。。。。。。。。。。。。。。。............36 6.3 国际空间站 (GARISS) 的 GPS 和伽利略接收机 (欧洲:ESA,美国:NASA) ..........。。。。。。。。。。。。。。。。。。。。。。。。。。。38 6.4 CARTOSAT-3(印度:ISRO)。。。。。。。。。。。。。。。。。。。。。。。。。。。...................40 6.5 Proba-3:高偏心轨道卫星精确编队飞行演示项目(欧洲:ESA)。..。。。。。。。。。。。。。。。。。。41
在未来 5 到 10 年内,世界将迎来真正的全球导航卫星系统 (GNSS) - 一个兼容且在许多方面可互操作的系统。美国全球定位系统、欧洲伽利略、或许还有俄罗斯的格洛纳斯系统以及包括广域增强系统 (WAAS)、欧洲地球静止导航覆盖服务 (EGNOS)、无线电信标系统(如美国全国差分 GPS)和兼容的商业差分校正服务在内的区域增强系统将组成这个多方面的 GNSS。通用信号结构和频率计划将使组合用户设备能够降低技术复杂性和成本,同时大大扩展相关应用。更强大且设计更完善的附加卫星和信号将增加室外稳健信号接收的可用性,并增强仅使用 GNSS 用户设备进行室内定位的潜力。但通往未来的道路并非没有风险:政治、技术、经济和文化风险。
全球导航卫星系统(GNSS)的摘要未来后代可以从光学技术中受益。尤其是光学时钟可以备份或替换当前使用的微波时钟,有可能改善通过其较低频率不稳定性来提高GNSS位置确定。此外,光学时钟技术(与光学卫星间链接结合使用),可启用新的GNSS体系结构,例如,通过使用时间和频率传输技术在星座内同步远处的光学频率参考。基于分子碘的无多普勒光谱的光学频率参考被视为未来GNSS光学时钟的有前途的候选者。已开发了紧凑型和坚固的设置,显示了1 s至10,000 s的平均时间在10-15级的频率不稳定性。我们介绍了未来GNSS应用程序的光学时钟技术,并介绍了我们基于碘的光频率参考的开发的当前状态。
摘要 未来几代全球导航卫星系统 (GNSS) 可受益于光学技术。特别是光学时钟可以备份或取代目前使用的微波时钟,由于其较低的频率不稳定性,有可能改善 GNSS 定位。此外,光学时钟技术与光学卫星间链路相结合,可实现新的 GNSS 架构,例如,通过使用时间和频率传输技术同步星座内的远距离光学频率参考。基于分子碘的无多普勒光谱的光学频率参考被视为未来 GNSS 光学时钟的有希望的候选者。已经开发出紧凑而坚固的装置,显示在 1 秒到 10,000 秒之间的平均时间内频率不稳定性在 10-15 级别。我们介绍了用于未来 GNSS 的光学时钟技术,并介绍了我们基于碘的光学频率参考的当前开发状态。