20 世纪 70 年代初,美国国防部 (DOD) 希望保证军事用途的稳定、可访问的卫星导航系统。国防部于 1978 年发射了第一颗带授时和测距卫星的导航系统;24 颗卫星系统于 1993 年达到全面运行能力 (FOC)。4 国防部不断努力改进其卫星和系统;最新的 GPS 卫星组 GPS III/IIIF 于 2018 年发射。这些改进有助于保持 GPS 作为 GNSS 的黄金标准。5 截至 2021 年 6 月,共有 31 颗运行卫星在轨,包括新旧卫星和在轨备用卫星。6 GPS 目前提供两种级别的服务:标准定位服务,可在全球范围内持续向所有用户提供,不收取任何直接用户费用;以及精确定位服务,其访问仅限于美国武装部队,
20 世纪 70 年代初,美国国防部 (DOD) 希望保证军事用途的稳定、可访问的卫星导航系统。国防部于 1978 年发射了第一颗带授时和测距卫星的导航系统;24 颗卫星系统于 1993 年达到全面运行能力 (FOC)。4 国防部不断努力改进其卫星和系统;最新的 GPS 卫星组 GPS III/IIIF 于 2018 年发射。这些改进有助于保持 GPS 作为 GNSS 的黄金标准。5 截至 2021 年 6 月,共有 31 颗运行卫星在轨,包括新旧卫星和在轨备用卫星。6 GPS 目前提供两种级别的服务:标准定位服务,可在全球范围内持续向所有用户提供,不收取任何直接用户费用;以及精确定位服务,其访问仅限于美国武装部队,
20 世纪 70 年代初,美国国防部 (DOD) 希望保证军事用途的稳定、可访问的卫星导航系统。国防部于 1978 年发射了第一颗带授时和测距卫星的导航系统;24 颗卫星系统于 1993 年达到全面运行能力 (FOC)。4 国防部不断努力改进其卫星和系统;最新的 GPS 卫星组 GPS III/IIIF 于 2018 年发射。这些改进有助于保持 GPS 作为 GNSS 的黄金标准。5 截至 2021 年 6 月,共有 31 颗运行卫星在轨,包括新旧卫星和在轨备用卫星。6 GPS 目前提供两种级别的服务:标准定位服务,可在全球范围内持续向所有用户提供,不收取任何直接用户费用;以及精确定位服务,其访问仅限于美国武装部队,
高能快速模块化卫星组 HERMES 是一项具有挑战性的科学空间任务,旨在为新型多信使天体物理学做出贡献,通过在轨道上巧妙分布一组传感器,及时定位伽马射线爆发 (GRB),引力波产生的踪迹,同时持续监测天球。六个新型微型 X 和伽马射线探测器安装在一颗专用的 3U 立方体卫星上,构成准赤道低地球轨道星座的核心。1 这些多重空间资产通过三角测量执行协调的天空监测和定位,即使用一个分割的大型探测器。天空监测应尽可能广泛,并且必须及时将宇宙事件定位坐标(无论何时发生)传输到地面(数量级:15 分钟),以允许强大的地球仪器调查更多检测到的相关天空区域。
摘要。本文涉及许多高级空间预测,重点是大量卫星在我们的星球上移动在低地轨道上,并探讨了如何组织它们以解决重要的世界问题,尤其是有关全球安全和防御问题的问题。这项工作分析了使用已开发的空间捕获技术(TPZ)的方法,该技术已经在许多用于建模和管理卫星系统的应用任务上进行了成功测试。对这个方向的特别兴趣是太空发展机构“下一代的太空架构”的最后一个项目,其中计划在不同层面上使用大量相互关联和有组织的卫星。该计划比1980年代提出的广为人知的“战略防御计划”要进步得多。tpz基于移动递归场景,该场景熟悉一种特殊的高级空间捕获语言(MPZ),该语言能够自行分布式环境并形成可以解决任何分布式问题的强大空间基础架构。本文列出了最新版本的TPZ的详细信息,解决方案的示例借助了问题,例如分布式跟踪以及随后的消除基础设施。摘要。还展示了如何通过安装特殊的虚拟级别,建立卫星组可以大大简化识别和解决陆地和太空环境中许多问题的过程,并通过复杂的国家国际业务和宇宙来降级。关键字:战略防御性计划,出色的鹅卵石卫星,下一代空间体系结构,超音速刨床,安全性,虚拟级别,虚拟级别,空间迷恋,移动迷恋。该论文审查了以低地球轨道在全球范围内移动的许多卫星上的各个空间项目,并调查了托林的方式。世界问题,尤其是与全球安全和国防有关的问题。它分析了在Numeros应用程序上成功测试的开发空间抓握模型和技术(SGT)的应用,以模拟和管理多个。特别感兴趣的是最新的太空发展机构的下一代太空架构,它使用了大量在不同的木星比八十年代已知的战略防御计划项目。sgt以一种特殊的高级空间掌握语言(SGL)的方式在移动递归方案中低调,该语言可以自动宣传和自匹配分布式环境。强大的空间基础架构能够解决任何分布式概率-LMS。提供了最新SGT版本的基础知识,该论文描述了解决方案的示例,例如分布式跟踪和消除复杂移动的巡航导弹和高超音速GLIDERS,组织有效的监护层的组织,这些层将能够观察到地球上的局部危险范围,还可以观察到任何分布式的Terrestrestial terrestrestial Instrestrial Infrrastructer。它还显示了如何插入卫星星座的较高虚拟层,这可以简化
SupGP 数据和流程经过了严格的测试、验证和确认。讨论了 SupGP 数据、SGP4 拟合、收敛标准和 RMS 计算结果的详细信息。提供了 SupGP 数据和传统 SSA 数据之间的其他近期和相关示例比较,并配有图形说明,以强调 SupGP 数据的好处以及太空界目前和将来采用 SupGP 数据的必要性。为了所有人的太空飞行安全,为了确保地球轨道环境为子孙后代保留,在太空界共享 SupGP 数据是当务之急。1. 简介现代太空运营环境、前所未有的变化速度和运营活动节奏给传统 SSA 技术和 GP 数据流程带来了压力,以至于它们本身不再完全有效。传统的非合作观测技术无法提供支持现代太空运营所需的精度和及时性的轨道数据,例如:多卫星发射、近距离部署、编队飞行集群和巨型星座运营。此外,现代太空操作以及数据量和卫星活动的增加对传统技术和 GP 数据产生了负面影响,减缓了 GP 数据流,降低了准确性,降低了观测频率,增加了错误,增加了卫星交叉标记,增加了丢失卫星的数量等。SupGP 数据是一种合作的 SSA 技术,使用卫星所有者/运营商提供的数据和其他公共来源来增强传统技术。SupGP 提高了数据的准确性、及时性、稳健性和透明度。这反过来又改善了 SSA、航天飞行安全、负责任地使用太空,并有助于为所有人保护地球轨道环境。2. 方法论每天,CelesTrak 都会检查已知的公开轨道数据源,并使用卫星工具包 (STK) 从这些数据中生成 GP 数据。例如,对于全球定位系统 (GPS) 星座,第二空间作战中队提供的最新 GPS 年历发布在 CelesTrak 的 GPS 数据部分,并根据 GPS 接口规范 (IS) IS-GPS-200M 进行传播,以生成第二天的星历表 [1]。表 1 提供了 CelesTrak 为其生成 SupGP 数据的卫星组的输入源数据更详细的列表。与标准 GP 查询不同,可以为单个对象获取多个 SupGP 元素。这是因为某些对象具有由多个源生成的数据(例如,使用 CPF 数据)或因为有多个时期的数据(Intelsat 数据)。表 1。CelesTrak SupGP 的输入源数据 缩写 说明 CPF 综合激光测距预测 GLONASS-RE GLONASS 快速星历表 GPS-A GPS 年历 GPS-E GPS 星历表 Intelsat-11P Intelsat 11 参数数据 Intelsat-E Intelsat 星历表 Iridium-E 铱星历表 ISS-E ISS 星历表 ISS-TLE ISS TLE [遗留数据] METEOSAT-SV METEOSAT 状态向量 OneWeb-E OneWeb 星历表 Orbcomm-TLE Orbcomm 提供的 SupTLE Planet-E Planet 星历表 SES-11P SES 11 参数数据 SpaceX-E SpaceX 星历表 SpaceX-SV SpaceX 状态向量 Telesat-E Telesat 星历表 Transporter-SV Transporter 状态向量