空军研究实验室 (AFRL) TechSat 21 飞行试验演示了三颗微卫星编队飞行,作为“虚拟卫星”运行。每颗卫星上的 X 波段发射和接收有效载荷形成一个大型稀疏孔径系统。卫星编队可以配置为优化各种任务,如射频 (RF) 稀疏孔径成像、精确地理定位、地面移动目标指示 (GMTI)、单程数字地形高程数据 (DTED)、电子保护、单程干涉合成孔径雷达 (IF-SAR) 和高数据速率安全通信。与单个大型卫星相比,这种微卫星编队的优势包括无限的孔径大小和几何形状、更大的发射灵活性、更高的系统可靠性、更容易的系统升级以及低成本的大规模生产。关键研究集中在编队飞行和稀疏孔径信号处理领域,并由空军科学研究办公室 (AFOSR) 赞助和指导。TechSat 21 计划初步设计评审 (PDR) 于 2001 年 4 月举行,并结合了大量系统交易的结果,以实现轻量、高性能的卫星设计。概述了实验目标、研究进展和卫星设计。
目标是在 2022 年发射 Kanyini,即从项目开始大约 18 个月后。这样就有时间开发卫星平台、集成有效载荷、进行集成测试并交付给发射提供商。在开发阶段的同时,正在制定一项研究计划,以便在进入轨道后充分利用这些系统。这包括早期研究和测试,以支持未来的 SmartSat 能力演示任务,例如 AquaWatch(水质监测)和 I-in-the-Sky(灾害和气候变化管理),涉及高光谱成像和物联网通信。这项研发将确保 Kanyini 支持 SA 在立方体卫星设计和生产方面的能力持续增长。
电气和机械部件小型化的持续趋势使得卫星尺寸稳步缩小。这一演变从传统的重型航天器发展到立方体卫星,现在又发展到新一代卫星:ChipSat。ChipSat 的质量不到 10 克,具有传统卫星设计中不常见的几个特点:独特的低平台质量、廉价的制造方法和增强的冗余度。这些特征的适当利用和协同作用有可能推动设计范围向创新任务架构发展,同时降低传统上进入太空的高门槛。未来的任务设计者、学术机构和有志于进入太空的实体都有机会从中受益。
立方体卫星这种纳米卫星引起了空间科学家和工程师的关注,他们希望观察太空环境并开发空间工程的创新技术。立方体卫星是一种小型卫星,其外形尺寸基于 10 厘米立方体。然而,立方体卫星的尺寸限制限制了将相对较大的任务设备(例如姿态控制系统)嵌入卫星。此外,用于传输数据和为任务设备供电的线束也占用了嵌入任务设备的物理空间。因此,本研究调查了早期关于纳米卫星线束设计的研究。此外,我们考虑了卫星总线系统光学无线线束的可能性,以实现更有效、更可靠的立方体卫星设计。
旨在研究太空天气对卫星系统的影响的研究揭示了太空天气的几个重要影响。其中一些效果包括:地磁诱导的电流:这些电流可能会破坏卫星系统在低地球轨道上的操作,因为它们靠近地球表面。由于表面充电和电弧引起的辐射效应:来自各种来源的辐射会损坏卫星系统,这就是为什么在卫星设计中需要具有辐射保护的组件。辐射对人类健康的影响。电离层对卫星通信和导航的影响:电离层中的湍流可能会导致电离层等离子体密度的不一致,这可能会折射传入的无线电信号并引起电离层干扰。热圈效应:磁性风暴期间高层大气的膨胀会产生大气阻力,这可能会导致海拔高度或卫星轨道的干扰[10]。
小型卫星的热控制系统 (TCS) 极具挑战性,因为传统的热设计实践、硬件和测试在压缩时可能无法产生相同的性能结果。小型卫星领域已经出现了用于热软件和硬件的新兴技术,而且还有更多技术正在迅速开发中。本文将讨论设计小型卫星热系统的固有挑战、热建模的进步、热硬件的最新进展以及新兴的热控制创新。这些技术包括用于以下特定小型卫星应用:热界面材料、热隔离器、热带、热管、楔形锁、石墨芯、可展开散热器、相变材料、百叶窗、低温冷却器和遮阳板。随着这些新技术的更多应用,小型卫星设计将能够维持对热要求更高的轨道任务。
Cube卫星(也称为Cubesats)是在20世纪后期开发的,此后一直是收集这个世界外数据的一种经济高效的方法。这些小规模卫星的发展已帮助全世界的大学和小型公司进行重要的实验,并收集关键数据以提供进一步的空间探索。立方体卫星设计为自我维持。为了正常运行,这些单元格在与航天器正常的阵列中扩展,该阵列与发射车分离后自动部署。根据国家航空航天局(NASA)进行的一项研究,太阳能电池板是Cobesats总体系统故障的最多CO1M11ON。这要求需要低成本,可靠的太阳能阵列部署系统。对这种部署系统的要求的理解是由太空动态实验室,具有相关经验的个人以及目前正在使用的设计的探索提供的。由于这项研究的结果,确定多个磁带弹簧铰链以及托架和功能区电缆最能满足客户的需求。这个简单的设计提供了
本文提出了一种分散式、分布式制导与控制方案,将异构卫星组件群组合成大型卫星结构。异构卫星群的组件卫星的选择以提高最终形状的灵活性,其灵感来自晶体结构和伊斯兰瓷砖艺术。在选择理想的基本构建模块后,进行基本的纳米卫星级卫星设计,以协助涉及姿态控制的模拟。群体轨道建造算法 (SOCA) 是一种制导和控制算法,用于实现在轨组装所需的有限类型异构性和对接能力。该算法由两部分组成:分布式拍卖使用障碍函数来确保为每个目标选择合适的代理;轨迹生成部分利用模型预测控制和顺序凸规划来实现到达所需目标点的最佳无碰撞轨迹,即使在非线性系统动力学的情况下也是如此。优化约束使用边界层来确定是否应应用防撞约束或对接约束。该算法在模拟扰动 6 自由度航天器动态环境中针对平面和非平面最终结构以及两个机器人平台(包括一群无摩擦航天器模拟机器人)进行了测试。