摘要:激子 - 波利顿代表一个有前途的平台,它结合了未来光电设备的光子和电子系统的强度。但是,由于制造方法的成本高成本和复杂性,他们的应用目前仅限于实验室研究,这与用于微电子的成熟CMOS技术不兼容。在这项工作中,我们开发了一种创新,低成本和CMOS兼容的方法,用于制造大型表面极化器件。这是通过通过热纳米膜直接对卤化物 - 玻璃盐薄膜进行直接构图来实现的。结果,我们观察到高度均匀的偏振质量模式Q≈300在室温下,千万尺度上。令人印象深刻的是,该过程提供了很高的可重复性和忠诚度,因为可以将相同的模具重复使用超过10次,以将钙钛矿层贴在不同类型的底物上。我们的结果可能为在室温下运行的低成本集成极化设备的生产铺平了道路。
BCSI 80% 的工作都是以数字化方式完成的,因此需要更先进的解决方案来满足其专业印刷需求,因此于 2022 年安装了一台五色 Versafire EV。之前使用湿墨粉设备,而 Versafire 的干墨粉配方非常适合 BCSI 的“光面”工艺——一种为印刷品添加特殊效果或箔的数字精加工技术。虽然 Versafire 的五色功能允许实现在线局部光泽效果,但透明墨粉也可以用作四步光面工艺中的遮罩,使 BCSI 能够离线精确地贴箔。“与我们过去使用的其他数字印刷机相比,Versafire 处理光面的效果非常好,”流程改进经理 Josh Platt 说。Versafire 出色的套准(包括单张纸对单张纸和从前到后的套准)进一步简化了流程,将专业印刷作业的周转时间缩短了一半。
全球至少有22亿人患有VI损害或失明[1]。盲人和视力障碍的人的数量仍在增加。盲文是盲人使用的通用触觉写作系统,其中三维,基于DOT的脚本允许阅读字符无光或视觉。与Clas Sical写作不同,单个字母字符是凸角,可以通过触摸指尖来阅读。Louis Braille(1809–1852)发明了带有他名字的写作系统,即盲文或盲文写作系统[2]。 可以通过用手指触摸[3]来“读取”此系统。 在盲文中,标志COM张贴了多达六个点,分为两列和三行,与适当的字母或其他字符相对应[4]。 通过在各个位置组合一个或多个点,可以设计64个组合,创建字母,数字,标点符号,Louis Braille(1809–1852)发明了带有他名字的写作系统,即盲文或盲文写作系统[2]。可以通过用手指触摸[3]来“读取”此系统。在盲文中,标志COM张贴了多达六个点,分为两列和三行,与适当的字母或其他字符相对应[4]。通过在各个位置组合一个或多个点,可以设计64个组合,创建字母,数字,标点符号,
摘要:在这项研究中,开发了使用ZnO和还原氧化石墨烯(RGO)复合材料的室温氨气传感器。传感器制造涉及反向偏移和静电喷雾沉积(ESD)技术的创新应用来创建ZnO/RGO传感平台。使用XRD,FT-IR,FESEM,EDS和XP对所得材料的结构和化学特性进行了全面分析,并通过UV-臭氧处理实现了RGO降低。电性能,表明由于紫外线处理而引起的电导率增强,并提高了ZnO -RGO异质结的形成带来的电荷迁移率。暴露于氨气,导致传感器的响应性增加,较长的紫外线治疗持续时间提高了较高的敏感性。此外,测量了响应和恢复时间,10分钟的紫外线处理的传感器显示出最佳的响应能力。绩效评估显示对氨浓度的线性响应性具有高R 2值。与丙酮和CO气体相比,传感器还表现出对氨的特殊选择性,使其成为氨气检测的有前途的候选者。这项研究显示了基于ZnO/RGO的氨气传感器的出色性能和潜在应用,这对气体检测领域有很大的贡献。
摘要:甲状腺激素的测定对于甲状腺功能亢进症和甲状腺功能减退症疾病的疾病具有实际临床意义。考虑到这一方面,已经开发了包括免疫测定,化学发光,质谱和高性能液相色谱等广泛的分析方法。这种类型的分析提供了可行的结果。尽管如此,它需要合格的员工,特殊设施,并且耗时。因此,本文依赖于用喷墨打印技术开发的电化学设备的制造,以免费检测甲状腺素(T4)。为了制造我们的电化学设备,从扩增电信号的材料的使用中考虑了几个方面,到找到对目标分析物具有亲和力的超分子支架以及对电极表面上分析物的需求。对于此任务,用混合纳米材料修改了印刷设备,该混合纳米材料由氧化石墨烯(RGO)组成,该氧化石墨烯(RGO)用Au纳米颗粒(AU – NP)和包裹剂和不同的Thiolate Cyclodextrins(X – CD-SH)作为携带剂。分析物通过超分子化学的化学预召集,因为环糊精和激素之间的包含复合物形成。形态学和电化学表征,以确保电极的正确可行性,从而达到出色的响应,灵敏度和检测极限(LOD)。
近年来,公共资助研究项目(第三方资助项目)的收购框架条件发生了变化。随着“地平线2020”框架计划的出台,欧盟改变了其资助条件。自此以后,管理费用不再按实际金额报销,而是仅按合格支出的 25% 的固定费率报销。此外,各种国家和欧盟资助计划都要求受助人做出贡献。这代表着一个特殊的挑战,因为与例如 IHP 相比,例如,弗劳恩霍夫研究所不允许以成本为基础提供这些项目,而只能在额外支出的基础上提供。在国家和地区的资助计划中,即使是按支出方式计费,也要求机构作出贡献的计划有所增加。
钙钛矿太阳能电池设备中正确选择的光管理策略在实现高功率转换效率方面是必不可少的。应考虑降低反射损失,前表面的质地化,类似于已建立的太阳能电池技术中使用的反射损失。在本文中,使用滚筒纳米膜技术应用于平面钙钛矿太阳能电池,以最大程度地减少反射损失。The results show that the applied honeycomb pattern reduces the solar-weighted reflectance from 13.6% to 2.7%, which enhances the current density of the unmodified cell by 2.1 mA cm − 2 , outperforming the commonly used planar MgF 2 antireflective coating by 0.5 mA cm − 2 .实验结果与光学建模结合在一起,以发现优化的结构,并预测太阳模块中的光学行为。这项工作中使用的过程可以转移到Perovskite-Silicon串联太阳能电池,为未来设备的反射减少提供了有希望的途径。
柔软和兼容的执行器的开发引起了极大的关注,因为它们在软机器人,可穿戴设备,触觉和辅助设备中的使用。尽管进步了数十年,但完全数字印刷的执行器的目标尚未得到充分证明。数字打印允许快速自定义执行器的几何形状,尺寸和变形程序,并且是朝着大规模定制用户特异性可穿戴设备和软机器人系统的一步。在这里,证明了一组材料和方法,用于快速制造3D打印的液晶弹性体执行器,这些液晶弹性体执行器通过由液体金属(LM)组成的印刷焦耳加热器进行电刺激 - 填充的弹性弹性体复合材料。与其他基于Ag的墨水不同,该LM弹性体复合材料不含烧结,可以使室温打印,并且可以拉伸,可以循环驱动,而无需导体的电气或机械故障。通过优化打印参数,并改善光聚合设置,这是一种弯曲到320°角的印刷执行器,比以前的LCE执行器低功耗。我们还展示了一种自定义的UV聚合设置,该设置允许在≈90S中对LCE执行器进行照片保存,即与以前的作品相比快> 500倍。快速的光聚合能够迈向多层执行器的3D打印,并且是朝着全数字打印的机器人和可穿戴设备进行大规模定制的一步。
由于对供应链简化的期望,更好地利用现有食品材料,食品货架 - 寿命扩展,食品设计定制和个性化营养,对3DFP的兴趣在过去十年中的增长非常明显(Holland等,2018)。人物营养是3DFP技术最令人兴奋的承诺之一。是指可用于个人或特定人群的饮食,例如Athletes,孕妇或老年人。该应用程序的一个例子是“绩效”项目(使用快速制造的老年消费者营养来开发个性化食品),该项目由欧盟建立,旨在开发和验证吞咽和/或咀嚼问题的老年人的整体,个性化食品供应链(C. Feng等人,2019年)。此外,3DFP技术可以解决与营养缺乏症有关的一些健康问题,例如维生素D缺乏症(Azam等,2018)。