9.3.1 危害识别 86 9.3.2 剂量反应评估 87 9.3.2.1 剂量反应值的类型 87 9.3.2.1.1 阈值 87 9.3.2.1.2 非阈值 88 9.3.2.2 毒性信息来源 88 9.3.3 暴露评估 90 9.3.3.1 计算加权平均值 90 9.3.3.2 计算挥发性物质的平均每日暴露量 91 9.3.3.3 风险评估暴露持续时间 92 9.3.3.4 开发和评估非致癌暴露的推荐方法 93 9.3.4 风险表征 93 9.3.4.1 非致癌风险 94 9.3.4.1.1 筛查危害指数95 9.3.4.1.2 健康终点特定危害指数 96 9.3.4.2 癌症风险 97 9.3.5 不确定性分析 97 9.3.6 使用 APH 方法对石油烃进行方法 3 风险评估 98 9.3.7 迫在眉睫的危害和重大危害评估 99 9.3.8 使用室内空气指导水平对 BTX 进行应急响应评估 99
摘要人工智能(AI)纳入地球科学的整合已在空间建模和气候引起的危害评估的变革时代迎来了。这项研究探讨了可解释的AI(XAI)的应用,以解决传统的“ Black-Box” AI模型的固有局限性,从而强调了高风险领域(例如自然危害管理)中的透明度和可解释性。通过分析水文学危害(包括干旱,洪水和滑坡),这项工作突出了XAI提高预测准确性并促进可行见解的潜力越来越大。该研究综合了XAI方法论的进步,例如注意力模型,Shapley添加说明(SHAP)和广义添加剂模型(GAM)及其在空间危害预测和缓解策略中的应用。此外,该研究确定了数据质量,模型可传递性和实时解释性的挑战,这为将来的研究提出了途径,以增强XAI在决策框架中的效用。这一综合概述有助于在XAI采用XAI方面的弥合差距,在快速的环境变化时代,可以实现强大,透明和道德的方法来进行气候危害评估。
有效的水管理计划 (WMP) 应用危害分析和关键控制点 (HACCP) 原则来有效控制军团菌。HACCP 流程旨在识别建筑物供水系统中可能为军团菌生长创造条件的潜在危害,并制定操作和维护程序以防止或消除这些潜在危险情况或将其降低到可接受的水平。HACCP 方法在考虑建筑物的场地特定特征时最有价值。要实施 HACCP 计划,您的 WMP 必须包括:• 建筑物供水系统的详细描述:解决系统中可饮用和非饮用组件的问题。问问自己:建筑物供水系统的主要特征是什么,水如何流过它们并流经整个建筑物?• 潜在危害评估:识别可能导致水质不佳和其他允许军团菌生长的条件的危害。问问自己:建筑物供水系统的哪些部分是脆弱的,可能促进军团菌生长? • 风险评估和风险管理计划:评估每个已识别危险的风险等级,并制定治疗和应对计划和时间表以控制每个风险。问问自己:我将使用什么手段和方法来控制风险?
安全关键系统需要在软件开发生命周期中进行特定的开发和评估活动,以确保产品安全。其中一些活动被汇总为全面的安全工程实践,这些实践在行业内是标准化的,例如航空业的航空航天推荐实践 (ARP) 4761。这些技术侧重于单个组件的故障和可靠性。系统理论过程分析 (STPA) 等较新的技术超越了单个组件的可靠性,考虑了组件之间的相互作用。在本文中,我们介绍了架构主导的安全分析 (ALSA) 方法,它是架构主导的安全工程实践的一部分。ALSA 结合了至少部分架构模型的开发和分析,使用诸如架构分析和设计语言、其错误模型附件之类的符号以及现有的 ARP 4761 和 ARP 4754A 实践,例如功能危害评估、初步系统安全评估和系统安全评估以及新兴的 STPA 技术。这项工作为使用 ALSA 分析全权限数字引擎控制器提供了一个例证。该方法由开放源代码架构工具环境支持,并已在工业强度示例上进行了试验。
5 空气毒物的特征效应 ................................................................................................................................ 48 5.1 什么是毒性值以及 NATA 如何使用它们?........................................................................... 48 5.2 NATA 中使用哪些类型的毒性值?.................................................................................... 49 5.2.1 癌症单位风险评估 ............................................................................................................. 49 5.2.2 非癌症慢性参考浓度 ............................................................................................. 51 5.3 NATA 使用哪些毒性值数据来源?.................................................................... 52 5.3.1 美国环保署综合风险信息系统 ...................................................................................... 52 5.3.2 美国卫生与公众服务部有毒物质与疾病登记署 ........................................................................................ 53 5.3.3 加州环境保护署环境健康危害评估办公室 ............................................................................................. 53 5.3.4 美国环保署健康影响评估汇总表 ...................................................................................... 53 5.3.5 世界卫生组织国际癌症研究机构 ............................................................................. 53 5.4 对于某些化学品,在毒性值方面还做出了哪些其他决定?................................................................................................................................................ 54 5.4.1 有口服评估但缺乏吸入评估的致癌物 ...................................................................................................... 54 5.4.2 多环有机物 ............................................................................................................................. 55 5.4.3 乙二醇醚 ............................................................................................................................. 55 5.4.4 金属 ............................................................................................................................. 55 5.4.5 调整诱变剂 URE 以考虑儿童时期的接触 ............................................................................. 56 5.4.6 柴油颗粒物 ............................................................................................................................. 56 5.4.7 其他说明 ............................................................................................................................. 57 5.5 总结 ............................................................................................................................................. 57
感谢 2021 年 1 月 22 日由南加州大学公平研究所 (ERI) 赞助的针对研究人员和活动人士的环境正义研讨会的参与者,以及 2021 年 6 月 3 日由斯坦福能源建模论坛和南加州大学施瓦辛格研究所赞助的气候变化政策研讨会的参与者对本文早期版本的评论。还要感谢 Kyle Meng 和 Danae Hernández-Cortés 进行的各种交流,比较他们的分析策略和我们的分析策略,以及感谢加州环境健康危害评估办公室 (OEHHA) 的研究人员讨论评估限额与交易影响的方法并帮助我们彻底清理数据。还要感谢加州大学洛杉矶分校的 Madeline Wander 之前在数据收集方面提供的帮助,感谢南加州大学环境研究所的 Jeffer Giang 和 Lance Hilderbrand 在编程方面的帮助,感谢南加州大学环境研究所的 Rhonda Ortiz、Dawy Rkasnuam 和 Sabrina Kim 在文字编辑和最终设计方面的帮助,以及感谢 Emma Yudelevitch 为 1 月份环境正义研讨会所做的规划工作。本项目的资金由能源基金会提供。
缩略语 CAT 后果评估小组 CM 危机经理 COA 持续进行中评估 CRAD 标准和审查方法文件 DOE 美国能源部 EA 企业评估办公室 EAL 紧急行动水平 EMCC 环境监测协调中心 EOC 紧急行动中心 EOS 紧急行动系统 EPHA 应急计划危害评估 EPI 紧急公共信息 EPZ 应急计划区 ERO 应急响应组织 FMT 现场监测小组 HFIR 高通量同位素反应堆 IC 事件指挥官 ICP 事件指挥所 JIC 联合信息中心 KI 碘化钾 km 公里 LERC 实验室应急响应中心 LSS 实验室值班主管 MVPW 梅尔顿谷工艺废水 OE 运营紧急情况 OFI 改进机会 ORNL 橡树岭国家实验室 OSO ORNL 现场办公室 PA 防护行动 PAC 防护行动标准 PAR 防护行动建议 PIO 公共信息官 SIP 就地避难 TEL 早期致死阈值 TEMA 田纳西州应急管理局TIA 及时初步评估 UT-Battelle UT-Battelle, LLC WebEOC ® 基于 Web 的紧急行动中心软件
用保留的射血分数(HFPEF)具有多种合并症和有限的治疗选择的异质性。1多种病理有助于发展不同的临床HFPEF现象。1的证据表明,健康的社会决定者(SDOH)在心血管疾病的发病机理中是关键的。2由疾病控制与预防中心和世界卫生组织定义,SDOH是指人们出生,生活,学习,工作,娱乐,崇拜和年龄的环境中的状况,影响健康状况和生活质量的风险。SDOH包括5个领域:(1)教育访问和质量,(2)经济稳定,(3)社会和社区环境,(4)医疗保健访问和质量,(5)邻里和建筑环境。研究SDOH和环境因素(图[A1])如何影响HFPEF表型受到限制。概念化社区和建筑环境对于了解SDOH如何促进心血管疾病健康不平等。3首先,为了解释SDOH如何影响HFPEF,我们通过人口普查数据确定了加利福尼亚州的人口级邻里环境(NENV)。第二,为了确定建筑环境,我们使用了加利福尼亚环境健康危害评估,犯罪磨损和Howloud的公开数据集。第三,我们对UC Davis的HFPEF患者进行了回顾性分析,以将NENV与其表型相关联。
本文介绍了如何将雷达、卫星和闪电数据与数值天气模型数据结合使用,以远程检测和诊断雷暴中及周围的大气湍流。使用 NEXRAD 湍流检测算法 (NTDA) 测量云内湍流,该算法使用经过严格质量控制的地面多普勒雷达数据。NTDA 的实时演示包括生成覆盖落基山脉以东美国大陆的 3-D 湍流马赛克、基于网络的显示以及将湍流图实验性地上传到途中的商用飞机。近云湍流是根据雷暴形态、强度、增长率和环境数据推断出来的,这些数据由 (1) 卫星辐射测量、变化率、风和其他派生特征、(2) 雷击测量、(3) 雷达反射率测量和 (4) 天气模型数据提供。这些数据通过机器学习技术相结合,该技术使用商用飞机的现场湍流测量数据库进行训练,以创建预测模型。这项新功能由 FAA 和 NASA 资助开发,旨在增强当前美国和国际湍流决策支持系统,以便为飞行员、调度员和空中交通管制员提供快速更新、高分辨率、全面的大气湍流危害评估。它还将为 NextGen 的综合 4-D 天气信息数据库做出贡献。
前言 1. 本军用标准经批准供国防部所有部门和机构使用。 2. 有关本文件的评论、建议或问题应发送至海军部 Indian Head 分部,NSWC,代码 E12AP,文件控制,4123 Artisans Court, Suite 103, Indian Head, MD 20640-5115 OFFICIAL BUSINESS,或发送电子邮件至 amanda.penn@navy.mil。由于联系信息可能会发生变化,您可能需要使用 ASSIST 在线数据库(https://assist.daps.dla.mil)验证此信息的时效性。 3. 本文件包含用于评估非核弹药的弹药安全性和不敏感弹药 (IM) 特性的测试或对北约标准化协议 (STANAG) 的引用。从历史上看,该标准主要用于评估武器安全性。该标准后来进行了修订,增加了由《不敏感弹药联合服务要求》(JSRIM)和现在的北约 STANAG 要求的额外 IM 测试。之前的修订区分了武器安全测试和 IM 测试,尽管这些测试通常可能包含在同一系统危害评估测试程序中。此修订更新了第 2 节中的适用文件,并根据联合需求监督委员会 (JROC) 建议的标准化、单一 IM 测试集和通过标准对 IM 测试(第 5.2 节)进行了更新,供所有组件用于评估 I