配备以下安全设备: • 急救箱内物品未过期。• 化学灭火器。• 烟雾报警器处于正常工作状态(冬季风暴季节前检查,如有必要更换电池)。• 一氧化碳探测器(冬季风暴季节前检查,如有必要更换电池)。• 燃气发电机。° ° 切勿在室内、车库内或家中进气口附近使用发电机,因为存在一氧化碳中毒风险。° ° 请勿在发电机或电器潮湿时使用。° ° 请勿将汽油存放在可能引起烟雾点燃的室内。° ° 使用单独的重型户外级电源线插入其他电器。
20.概要。实施第三级天气,以及对激活每个天气图的现有雷达信号阈值进行更改,旨在帮助管制员协助飞行员避开危险天气区域。级别将由径向线表示;由 M 和 H 表示。与今天提供此类天气的方式相比,航路天气的收集、处理和显示将发生最小的变化。已经进行或正在进行的更改包括:修改中央计算机综合主机 (CCCH)、计算机显示通道 (CDC) 和显示通道综合 (DCC)、直接访问雷达通道 (DARC) 和航路自动雷达跟踪系统 (EARTS) 中的软件,以接受来自 CD-2 和 ARSR-3 系统的三级天气。此外,通用数字化仪 2 型 (CD-2) 和航路监视雷达 3 型 (ARSR-3) 系统将进行改造,以提供处理和向 ARTCC 传输三级天气的能力。
高空伪卫星 (HAPS) 是一种固定翼、太阳能供电的无人驾驶飞行器 (UAV),旨在成为固定轨道卫星的灵活替代品,用于长期监测地面活动。然而,由于其重量轻、电动机功率弱,该平台对天气相当敏感,无法在危险天气区快速飞行。在这项工作中,我们将多个 HAPS 的任务规划问题公式化为以 PDDL+ 表示的混合规划问题。该公式还考虑了平台动态建模问题、时变环境以及需要执行的异构任务。此外,我们提出了一个框架,将 PDDL+ 自动规划器与自适应大邻域搜索 (ALNS) 方法相结合,开发该框架是为了将自动规划器与特定于该问题的元启发式方法相结合。任务和运动规划在框架内以交织的方式完成,因此保留了共同的决策/搜索空间。我们使用第三方 HAPS 真实模拟器以及一组基准测试验证了我们的方法,表明我们的集成方法可以制定可执行的任务计划。
摘要:预报通常会在模型预测中校准其信心。合奏固有地估计预测信心,但通常是不足的,整体扩散与集合均值误差并不密切相关。合奏传播与技能之间的错位激发了“预测预测技能”的新方法,以便预测者可以更好地利用集合指导。我们已经训练了逻辑回归和随机森林模型,以预测NSSL WARN-FORECAST系统(WOFS)的复合反射性预测的技能,这是一个3公里的合奏,可快速更新预测指南,以预测0-6小时。预测技能预测在分析时间在观察到的风暴位置确定的量化区域内的1-,2或3小时提前时间有效。我们使用WOFS分析和预测输出以及NSSL多雷达/多传感器复合反射性,从2017年到2021年的106例NOAA危险天气测试床春季预测实验。我们将预测任务框架为多类问题,在该问题中,预测技能标签是通过平均为多个反射性阈值和验证范围的延长分数技能得分(EFSS)来确定的20%)。初始机器学习(ML)模型对323个预测变量进行了培训;最终模型中的10或15个预测变量只会降低技能。最终模型基本上优于精心开发的持久性和基于传播的模型,并且可以合理地解释。结果表明,ML可以成为指导用户对对流(和更大尺度)合奏预测的有价值的工具。