大脑功能依赖于脉冲神经元回路,其中突触在融合传输与记忆存储和处理方面发挥着关键作用。电子技术在模拟神经元和突触方面取得了重要进展,而将大脑和受大脑启发的设备连接起来的脑机接口概念也开始实现。我们报告了大脑和硅脉冲神经元之间的忆阻连接,这些连接模拟了真实突触的传输和可塑性。与金属薄膜氧化钛微电极配对的忆阻器将硅神经元连接到大鼠海马的神经元。忆阻可塑性解释了连接强度的调节,而传输则由通过薄膜氧化物的加权刺激介导,从而产生类似于兴奋性突触后电位的反应。反向大脑到硅的连接是通过微电极-忆阻器对建立的。在此基础上,我们展示了一个三神经元脑硅网络,其中忆阻突触经历由神经元放电率驱动的长期增强或抑制。
一种能够模仿人脑同时处理多种类型数据能力的神经形态计算芯片可以从根本上革新和改进备受诟病的冯诺依曼计算机架构。忆阻器是构建神经形态智能系统的最佳硬件单元之一,因为它们在固有低电压下工作、使用多位存储并且制造成本低廉。然而,作为一种无源器件,忆阻器单元需要外部能量才能运行,导致功耗高且电路结构复杂。最近,一种新兴的自供电忆阻系统有望完美解决上述问题,该系统主要由忆阻器和电动纳米发电机组成。它因无电运行的优势而引起了人们的极大兴趣。在这篇综述中,我们系统地描述了从存储到神经形态计算的自供电忆阻系统。这篇综述还证明了自供电忆阻系统在人工智能中的应用前景。
超维计算 (HDC) 采用并行计算范式和高效学习算法,非常适合资源受限的人工智能 (AI) 应用,例如边缘设备。基于忆阻设备的内存计算 (IMC) 系统通过提供节能硬件解决方案对此进行了补充。为了充分利用忆阻 IMC 硬件和 HDC 算法的优势,我们提出了一种硬件算法协同设计方法,用于在忆阻片上系统 (SoC) 上实现 HDC。在硬件方面,我们利用忆阻交叉开关阵列固有的随机性进行编码,并采用模拟 IMC 进行分类。在算法层面,我们开发了硬件感知编码技术,将数据特征映射到超维向量中,从而优化了忆阻 SoC 内的分类过程。硬件实验结果表明语言分类任务的准确率为 90.71%,凸显了我们的方法在边缘设备上实现节能 AI 部署的潜力。
位英语 考试 特点 , 采用多 功能 的编排 方法 , 不仅 有助 于考生 理解记 忆单 词 , 准 确掌 握词的 运用 , 而且 能够 使 考生 快 速扩
数字计算机不断增长的处理能力需求不可能无限期地得到满足,除非计算领域出现范式转变。神经形态计算从大脑的高度并行、低功耗、高速和抗噪声计算能力中汲取灵感,可能带来这样的转变。来自学术界和工业界的许多研究人员一直在研究材料、设备、电路和系统,以实现神经元和突触网络的一些功能,从而开发神经形态计算平台。这些平台采用各种硬件技术设计,包括成熟的互补金属氧化物半导体 (CMOS) 和新兴的忆阻技术,如基于 SiO x 的忆阻器。本文重点介绍了用于神经形态系统的 CMOS、基于 SiO x 的忆阻器和混合 CMOS-忆阻硬件的最新进展。本文提供了各种设备的新成果和已发表成果,这些设备旨在复制神经元、突触和简单脉冲网络的选定功能。结果表明,CMOS 和忆阻设备组装在不同的神经形态学习平台中,以执行简单的认知任务,例如对基于脉冲速率的模式或手写数字进行分类。本文设想,所展示的内容将对非常规计算研究界有用,因为它可以深入了解神经形态硬件技术的进步。
除非计算领域出现范式转变,否则数字计算机不断增长的处理能力需求不可能无限期地得到满足。神经形态计算从大脑的高度并行、低功耗、高速和抗噪声计算能力中汲取灵感,可能带来这样的转变。来自学术界和工业界的许多研究人员一直在研究材料、设备、电路和系统,以实现神经元和突触网络的一些功能,从而开发神经形态计算平台。这些平台采用各种硬件技术设计,包括成熟的互补金属氧化物半导体 (CMOS) 和新兴的忆阻技术,如基于 SiO x 的忆阻器。本文重点介绍了用于神经形态系统的 CMOS、基于 SiO x 的忆阻器和混合 CMOS-忆阻硬件的最新进展。本文提供了各种设备的新成果和已发表成果,这些设备是为了复制神经元、突触和简单脉冲网络的选定功能而开发的。结果表明,CMOS 和忆阻设备组装在不同的神经形态学习平台中,以执行简单的认知任务,例如对基于脉冲速率的模式或手写数字进行分类。本文设想,所展示的内容将对非常规计算研究界有用,因为它可以深入了解神经形态硬件技术的进步。
2024 年 8 月 30 日 — 2 参赛资格必须是以下之一。国防部竞赛参与资格()“完整建筑施工”A、B、C、D 级飞行礼物所有部委和机构的统一资格)“提供服务等”A、B、C、D 级...
摘要 随着基于忆阻技术的内存计算系统的迅速兴起,将此类内存设备集成到大规模架构中是需要解决的主要问题之一。在本文中,我们研究了基于 HfO 2 的忆阻设备在大规模 CMOS 系统(即 200 毫米晶圆)中的集成。分析了单金属-绝缘体-金属设备的直流特性,同时考虑了设备间的差异和开关特性。此外,还分析了样品原始状态下漏电流水平的分布,并将其与被测设备中未成形的忆阻器数量相关联。最后,将得到的结果拟合到基于物理的紧凑模型中,从而可以将其集成到更大规模的模拟环境中。
摘要 — 卷积神经网络 (CNN) 是最重要的深度神经网络 (DNN) 类别之一,有助于解决许多与图像识别和计算机视觉相关的任务。它们使用传统 CMOS 技术和数字设计技术的传统实现仍然被认为非常耗能。浮点 CNN 主要依赖于 MAC(乘法和累加)运算。最近,基于 XNOR 和位计数运算的经济高效的 Bite-wise CNN 已被视为可能的硬件实现候选。然而,由于内存和计算核心之间密集的数据提取导致的冯诺依曼瓶颈限制了它们在硬件上的可扩展性。XNOR-BITCOUNT 操作可以通过在忆阻交叉开关阵列上执行的内存计算 (IMC) 范例轻松实现。在新兴的忆阻设备中,自旋轨道扭矩磁随机存取存储器 (SOT-MRAM) 提供了具有更高导通电阻的可能性,从而可以降低读取电流,因为所有交叉开关阵列都是并行读取的。这有助于进一步降低能耗,为更大的交叉开关设计铺平道路。本研究提出了一种基于 SOT-MRAM 的交叉开关架构,能耗极低;我们研究了工艺变异性对突触权重的影响,并对整个交叉开关阵列进行了蒙特卡罗模拟,以评估错误率。模拟结果表明,与其他忆阻解决方案相比,此实现的能耗较低,每次读取操作的能耗为 65.89 fJ。该设计对工艺变化也具有很强的鲁棒性,读取误差极低,最高可达 10%。
混合忆阻器-CMOS神经元用于全硬件忆阻脉冲神经网络的原位学习 张旭萌 #1,2,3、陆建 #2、王睿 2,3、魏劲松 2、石拓 2,4、窦春梦 2,3、吴祖恒 2,3、尚大山 2,3、幸国忠 2,3、刘奇*1,2、刘明 1,2 1 复旦大学前沿芯片与系统研究所,上海 200433,中国,2 中国科学院微电子研究所微电子器件与集成技术重点实验室,北京 100029,中国,3 中国科学院大学,北京 100049,中国,4 浙江实验室,杭州 311122。 E-mail: qi_liu@fudan.edu.cn #这些作者对这项工作做出了同等贡献。摘要: