卵母细胞在受精之前必须生长和成熟,这要归功于与周围的体细胞进行密切的对话。这种通信的一部分是通过类似纤维状的突起,称为跨分散投影(TZP),由体细胞发送到卵母细胞膜。为了研究TZP对卵母细胞质量的贡献,我们通过产生完整的TZP结构组件肌球蛋白-X(myo10)的敲除小鼠来损害它们的结构。使用旋转盘和超分辨率显微镜结合了机器学习方法的表型卵形形态,我们表明缺乏Myo10会在卵母细胞生长过程中降低TZP密度。减少TZP并不能防止卵母细胞生长,而是会损害卵母细胞的完整性。重要的是,我们通过转录组分析揭示了基因表达在TZP缺乏的卵母细胞中发生了改变,并且卵母细胞成熟和随后的早期胚胎发育受到部分影响,从而有效地降低了小鼠的生育能力。我们建议TZP在种系的结构完整性中起作用 - 体细胞复合物,这对于调节卵母细胞中的基因表达至关重要。
1 1,大阪大学医学院,日本大阪苏萨医学院研究生院,2临床基因组学系,大阪大学医学院,日本大阪市苏亚,大阪,日本大阪,3临床研究支持中心,Wakayama医科医院,Wakayama,Wakayama,Wakayama,日本Wakayama,日本Wakayama,4 5繁殖医学系东京繁殖诊所东京诊所,日本东京北部,日本6号生物医学统计司,大阪大学医学院综合医学系,大阪苏卡,日本大阪苏亚卡,日本环境医学和人口服务部7司1,大阪大学医学院,日本大阪苏萨医学院研究生院,2临床基因组学系,大阪大学医学院,日本大阪市苏亚,大阪,日本大阪,3临床研究支持中心,Wakayama医科医院,Wakayama,Wakayama,Wakayama,日本Wakayama,日本Wakayama,4 5繁殖医学系东京繁殖诊所东京诊所,日本东京北部,日本6号生物医学统计司,大阪大学医学院综合医学系,大阪苏卡,日本大阪苏亚卡,日本环境医学和人口服务部7司
体外研究证实,M07可以在胃肠道内生存和增殖。balb/c小鼠在卵蛋白(OVA)Challenge之前和之后均给予M07。评估了OVA特异性免疫球蛋白(IG)E和IgG1的血清水平,以及支气管肺泡灌洗液中的炎性细胞和细胞因子以及肺组织的组织病理学检查。与安慰剂(PLA)组相比,用M07处理的小鼠表现出明显较低的OVA特异性IgE和IgG1(P <0.01)。与PLA组相比,预处理(PER)组和经后处理后(POS)组的嗜酸性粒细胞和中性粒细胞的计数也显着降低(P <0.01)。对肺组织的组织学分析验证了M07对炎症的保护作用,示例表现为炎症细胞的浸润降低。 此外,PE和POS组中的小鼠的IL-10水平显着增加(P <0.01),并且显着降低了IL-5,IL-13,MCP-1,Eotaxin,Eotaxin和肿瘤坏死因子-α的水平(P <0.01)。对肺组织的组织学分析验证了M07对炎症的保护作用,示例表现为炎症细胞的浸润降低。此外,PE和POS组中的小鼠的IL-10水平显着增加(P <0.01),并且显着降低了IL-5,IL-13,MCP-1,Eotaxin,Eotaxin和肿瘤坏死因子-α的水平(P <0.01)。
摘要:辅助生殖技术 (ART) 对老年女性的疗效仍然受到限制,这主要是由于对潜在病理生理学的理解不完全。本综述旨在巩固当前关于与年龄相关的线粒体改变及其对卵巢衰老的影响的知识,重点关注线粒体 DNA (mtDNA) 突变的原因、其修复机制和未来的治疗方向。通过系统搜索电子数据库,确定了截至 2024 年 9 月 30 日发表的相关文章。自由基理论提出,活性氧 (ROS) 会对 mtDNA 造成损害并损害卵母细胞中 ATP 生成所必需的线粒体功能。卵母细胞面临修复 mtDNA 突变的长期压力,这种压力可持续长达五十年。mtDNA 表现出有限的双链断裂修复能力,严重依赖于聚 ADP-核糖聚合酶 1 (PARP1) 介导的单链断裂修复。这一过程会消耗烟酰胺腺嘌呤二核苷酸 (NAD + ) 和 ATP,形成一个恶性循环,持续的线粒体 DNA 修复会进一步损害卵母细胞的功能。中断这一破坏性循环的干预措施可能会带来预防效益。总之,线粒体 DNA 突变和修复需求的累积负担可能导致 ATP 消耗并增加非整倍体的风险,最终导致老年女性的 ART 失败。
©作者2024。Open Access本文在创意共享属性下获得许可 - 非商业 - 非洲毒素4.0国际许可证,该许可允许以任何中等或格式的任何非商业用途,共享,分发和复制,只要您与原始作者提供适当的信誉,并为您提供了符合创造性共识许可的链接,并提供了持有货物的启动材料。您没有根据本许可证的许可来共享本文或部分内容的适用材料。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问h t p://c r e a t i v e c o m m o ns。or g/l i c e n s e s/b y-n c-n c-n c-n d/4。0/。
在哺乳动物卵母细胞中建立适当的DNA甲基化景观对于母体的印记和胚胎发育很重要。de de dNA甲基化,该DNA甲基转移酶DNMT3A具有ATRX-DNMT3-DNMT3L(ADD)结构域,该域与组蛋白H3尾巴相互作用,在赖氨酸-4处未甲基化的组蛋白H3尾部(H3K4ME0)。该结构域通常通过分子内相互作用阻止甲基转移酶结构域,并与组蛋白H3K4me0结合释放自身抑制。然而,H3K4ME0在染色质中广泛存在,并且添加 - 固定相互作用的作用尚未在体内研究。我们在此表明,小鼠DNMT3A的添加域中的氨基酸取代会导致矮人。卵母细胞显示CG甲基化的镶嵌性丧失和几乎完全的非CG甲基化丧失。源自此类卵母细胞的胚胎在中胎妊娠中死亡,并在印记控制区域内具有随机,通常是全或无人类型的CG-甲基化损失,并且链接基因的misexpression。随机损失是一个两步的过程,在裂解阶段胚胎中发生损失,并在植入后重新恢复。这些结果突出了添加域在有效且可能是过程中,从头甲基化和构成一种模型,是生殖细胞中表观遗传扰动对下一代的随机遗传的模型。
卵母细胞在受精之前必须生长和成熟,这要归功于与周围的体细胞进行密切的对话。这种通信的一部分是通过类似纤维状的突起,称为跨分散投影(TZP),由体细胞发送到卵母细胞膜。为了研究TZP对卵母细胞质量的贡献,我们通过产生完整的TZP结构组件肌球蛋白-X(myo10)的敲除小鼠来损害它们的结构。使用旋转盘和超分辨率显微镜结合了机器学习方法的表型卵形形态,我们表明缺乏Myo10会在卵母细胞生长过程中降低TZP密度。减少TZP并不能防止卵母细胞生长,而是会损害卵母细胞的完整性。重要的是,我们通过转录组分析揭示了基因表达在TZP缺乏的卵母细胞中发生了改变,并且卵母细胞成熟和随后的早期胚胎发育受到部分影响,从而有效地降低了小鼠的生育能力。我们建议TZP在种系的结构完整性中起作用 - 体细胞复合物,这对于调节卵母细胞中的基因表达至关重要。
摘要 人类和其他生物体中的 p53 基因家族成员编码大量蛋白质亚型,其功能大部分尚不明确。以果蝇为模型,我们发现 p53B 亚型主要在生殖细胞中表达,并与 p53A 共定位到亚核体中。然而,只有 p53A 介导生殖细胞和胞体中对电离辐射的凋亡反应。相反,p53A 和 p53B 都是减数分裂 DNA 断裂正常修复所必需的,当减数分裂重组有缺陷时,这种活性更为重要。我们发现在具有持续性 DNA 断裂的卵母细胞中,p53A 也是激活减数分裂粗线期检查点所必需的。我们的研究结果表明,果蝇 p53 亚型具有 DNA 损伤和细胞类型特异性功能,与哺乳动物 p53 家族成员在基因毒性应激反应和卵母细胞质量控制中的作用相似。
由于标准体外受精技术在马身上尚不可行,因此人们已使用多种不同技术来制造马胚胎用于研究。其中一种方法是孤雌生殖,即在没有引入精子的情况下诱导卵母细胞成熟为胚胎状状态,因此它们不被视为真正的胚胎。另一种方法是体细胞核移植 (SCNT),即将现存马的体细胞核插入去核的卵母细胞中,从而产生供体马的遗传克隆。由于美国马卵母细胞供应有限,研究人员已研究将马体细胞核与其他物种的卵母细胞相结合以制造用于研究的胚胎的可能性,但迄今为止尚未成功。人们对使用暴露于外源 DNA 的精子生产转基因动物的兴趣也日益浓厚。成功创建转基因马胚泡表明精子介导基因转移 (SMGT) 具有良好的前景,但这种方法并不适用于基因治疗等其他应用,因为它不能用于诱导靶向突变。这就是 CRISPR/Cas9 等技术至关重要的原因。在这篇评论中,我们认为孤雌生殖、SCNT 和跨物种 SCNT 可以被视为基因操作策略,因为它们可以产生与亲本细胞基因相同的胚胎。在这里,我们描述了这些方法的执行方式及其应用,还描述了用于直接修改马胚胎的几种方法:SMGT 和 CRISPR/Cas9。