摘要:充满活力和气候危机应该对科学家在可再生绿色能源领域中找到解决方案的挑战。在超过二十年的时间里,寻找能源行业的新机会使人们可以观察到氢作为能源的潜在使用。科学家为了将其用作能源而面临的最大挑战之一是设计安全,可用,可靠和有效的氢存储形式。此外,要存储氢的方式密切取决于这种绿色能源的潜在用途。在固定用途中,目的是实现容器的高容量密度。但是,从移动应用的角度来看,一个极为重要的方面是使用相对较高密度的轻质储罐的储存。这就是为什么,科学家的重点已放在碳基材料和石墨烯作为H 2存储领域中的视角解决方案的原因。本综述着重于对氢存储的不同方法的比较,主要基于碳基材料,并专注于使用石墨烯及其不同形式的有效材料,以在未来的H 2基于H 2的经济中达到目的。
抽象的体细胞年龄和死亡,但细菌谱系是不朽的。在秀丽隐杆线虫中,种系永生涉及每一代开始时的蛋白质结构,当时卵母细胞成熟信号触发了精子的卵母细胞成熟信号触发碳苯链蛋白和蛋白质聚集物的清除。在这里,我们在全基因组RNAi筛选的背景下探索了这种蛋白质抗体更新的细胞生物学。卵母细胞成熟信号通过溶酶体酸化引发蛋白质聚集的去除。我们的发现表明,溶酶体由于内质网活性的变化而被酸化,允许溶酶体V-ATPase组装,这又允许溶酶体通过微嗜碱性脂蛋白清除聚集体。我们为线粒体定义了两个函数,它们似乎都独立于ATP生成。屏幕上的许多基因还调节体内的溶酶体酸化和年龄依赖性蛋白质聚集,这表明种系中蛋白质的更新与体细胞寿命之间存在基本的机械联系。
摘要:线粒体是一种产生能量的细胞内细胞器,含有线粒体 DNA (mtDNA) 形式的自身遗传物质,mtDNA 编码对线粒体功能至关重要的蛋白质和 RNA。一些 mtDNA 突变可导致线粒体相关疾病。线粒体疾病是一组无法治愈的异质性遗传疾病,其中突变的 mtDNA 通过母体卵细胞质从母亲传递给后代。线粒体置换 (MR) 是一种基因组转移技术,其中携带疾病相关突变的 mtDNA 被假定无病的 mtDNA 取代。这种疗法旨在防止已知致病的线粒体传给下一代。这里介绍了通过基因组编辑专门去除或编辑 mtDNA 疾病相关突变的概念证明。尽管在核移植过程中引入人类卵母细胞的线粒体 DNA 携带量很低,但线粒体 DNA 异质体的安全性仍然令人担忧。对于供体-受体线粒体 DNA 错配 (mtDNA-mtDNA)、受体 nDNA 与供体 mtDNA 混合导致的线粒体 DNA-核 DNA (nDNA) 错配以及线粒体 DNA 复制分离,尤其如此。这些情况可能导致线粒体 DNA 遗传漂变和回复到原始基因型。在这篇综述中,我们讨论了有关通过核移植预防线粒体疾病遗传的当前知识状态。
卵子发生是一种发展计划,通过该计划,配备能力的生殖细胞成为富含施肥的卵。在卵子发生过程中,卵母细胞的生长和分化与减数分裂的起始和进展密切相关。在哺乳动物中,减数分裂起始的时机是性二态性的,只有卵巢且不睾丸生殖细胞在胎儿发育过程中引发减数分裂。因此,胎儿减数分裂开始被认为是随后将卵巢生殖细胞生长和分化为完全生长的卵母细胞的先决条件。在这里,我提供了证据表明,减数分裂的起始和预言I在遗传上与卵母细胞生长和分化是可分开的,因此表明卵子发生在不同的调节下由两个独立的过程组成。这代表了卵子发生程序的新看法,并修改了当前小鼠卵子发生的生殖细胞承诺模型。拟议的修订模型解释了生殖细胞对减数分裂和分化的独立承诺。该模型可以提供有关以前无法解释的女性不育症病例的见解,并对体外卵子发生策略具有实际意义。