引言卵巢是维持卵泡不断增长和退化的女性生育能力的必不可少的器官。1抗癌疗法通常会导致卵巢衰竭和不育,因为卵巢卵泡储存易受放疗和化学疗法的影响。2,3化疗会损害卵巢的血管网络和基质细胞。它通过破坏静止维持和增加凋亡涉及的信号通路来减少原发性卵泡的储备。4由癌症治疗引起的不育症会引起许多癌症幸存者的焦虑和困扰。有很多方法可以维持生育能力,包括卵形或卵巢换座,胚胎冷冻保存,卵母细胞冷冻保存以及卵巢组织冷冻保存和移植(OTC/T)。5 Oophoropexy或卵巢换位是一种手术方式,主要是通过腹腔镜手术进行的,用于卵巢组织保存和放射治疗患者的生育能力。3,6-9胚胎冷冻保存需要促性腺激素刺激,这在雌激素敏感肿瘤治疗中具有相反作用的雌二醇水平增强。10但是,这种方法不适合需要立即开始化学疗法的患者,因为要获得卵母细胞,这些卵母细胞需要伴侣或供体精子,并且在青春期之前患者不当。11,12卵母细胞冷冻保存更容易受到损害细胞内冰形成的风险,因为表面积与体积比较大和水的渗透率低。13,14 OTC/T作为维持生育能力的新技术正在迅速发展。玻璃化,慢
摘要 人类和其他生物体中的 p53 基因家族成员编码大量蛋白质亚型,其功能大部分尚不明确。以果蝇为模型,我们发现 p53B 亚型主要在生殖细胞中表达,并与 p53A 共定位到亚核体中。然而,只有 p53A 介导生殖细胞和胞体中对电离辐射的凋亡反应。相反,p53A 和 p53B 都是减数分裂 DNA 断裂正常修复所必需的,当减数分裂重组有缺陷时,这种活性更为重要。我们发现在具有持续性 DNA 断裂的卵母细胞中,p53A 也是激活减数分裂粗线期检查点所必需的。我们的研究结果表明,果蝇 p53 亚型具有 DNA 损伤和细胞类型特异性功能,与哺乳动物 p53 家族成员在基因毒性应激反应和卵母细胞质量控制中的作用相似。
摘要:充满活力和气候危机应该对科学家在可再生绿色能源领域中找到解决方案的挑战。在超过二十年的时间里,寻找能源行业的新机会使人们可以观察到氢作为能源的潜在使用。科学家为了将其用作能源而面临的最大挑战之一是设计安全,可用,可靠和有效的氢存储形式。此外,要存储氢的方式密切取决于这种绿色能源的潜在用途。在固定用途中,目的是实现容器的高容量密度。但是,从移动应用的角度来看,一个极为重要的方面是使用相对较高密度的轻质储罐的储存。这就是为什么,科学家的重点已放在碳基材料和石墨烯作为H 2存储领域中的视角解决方案的原因。本综述着重于对氢存储的不同方法的比较,主要基于碳基材料,并专注于使用石墨烯及其不同形式的有效材料,以在未来的H 2基于H 2的经济中达到目的。
09:00-09:50 玻璃化冷冻方法:提高牛卵母细胞和体外胚胎的活力。Teresa Mogas。巴塞罗那自治大学。西班牙 09:50-10:50 简短口头交流
长期以来,人们都知道代谢紊乱会导致卵巢功能障碍,影响女性的生育能力,这种紊乱要么直接作用于卵泡细胞和/或卵母细胞,要么间接干扰垂体-下丘脑轴,导致卵子发生功能障碍。这种紊乱还会影响胚胎植入的效率和胚胎的质量,对后代的生育能力和健康产生永久性影响。随着对哺乳动物卵子发生和卵泡发生的分子机制的了解不断加深,我们开始了解这种紊乱如何对这一过程产生负面影响,从而影响女性的生育能力。在本综述中,我们指出并讨论了胰岛素/IGF 依赖性信号传导的紊乱和卵巢中活性氧 (ROS) 水平的升高(通常与 II 型糖尿病和肥胖等代谢紊乱有关)如何使卵巢储备的动态失调和/或损害卵母细胞的存活和能力。
绵羊。 这种差异对尖端生殖生物技术的应用具有深远的影响,并可能阻碍高质量母猪生殖性能的改善和建立人类疾病的猪模型。 因此,猪卵母细胞IVM的优化已成为全球猪繁殖群落研究的关键领域。 除了激素水平(Lu等,2014; Sakaguchi和Nagano,2020),氨基酸的可用性(Bahrami等,2019; Lee等,2019),以及抗氧化剂补充剂(Das等,2014; li等,2019; li et al。卵母细胞成熟质量的重要决定因素(Baltz和Zhou,2012年)。 超过一个世纪的哺乳动物胚胎培养经验强调了细胞体积控制在确定植入前胚胎的发育轨迹中的关键作用(Biggers,1998)。 早期培养哺乳动物胚胎的努力是基于仿生型的,在培养基中定位了受精卵的卵子,其渗透压近似于该生物体内部环境(290 - 310 MOSM)。 然而,这种方法导致物种特定的胚胎停滞,归因于渗透条件(Goddard和Pratt,1983; Camous等,1984; Camous等,1984; Bolton等,1989; Kishi等,1991)。 值得注意的是,成功克服了这种发育障碍的培养基要么将培养基的渗透压降低,要么融合了有机渗透剂,例如甘氨酸(Gly),Betaine,β-丙氨酸和谷氨酰胺,渗透性为310 MOSM的培养基(Van Winkle等,1990; Biggers et al eal and osmolartials osmolarity。绵羊。这种差异对尖端生殖生物技术的应用具有深远的影响,并可能阻碍高质量母猪生殖性能的改善和建立人类疾病的猪模型。因此,猪卵母细胞IVM的优化已成为全球猪繁殖群落研究的关键领域。除了激素水平(Lu等,2014; Sakaguchi和Nagano,2020),氨基酸的可用性(Bahrami等,2019; Lee等,2019),以及抗氧化剂补充剂(Das等,2014; li等,2019; li et al。卵母细胞成熟质量的重要决定因素(Baltz和Zhou,2012年)。超过一个世纪的哺乳动物胚胎培养经验强调了细胞体积控制在确定植入前胚胎的发育轨迹中的关键作用(Biggers,1998)。早期培养哺乳动物胚胎的努力是基于仿生型的,在培养基中定位了受精卵的卵子,其渗透压近似于该生物体内部环境(290 - 310 MOSM)。然而,这种方法导致物种特定的胚胎停滞,归因于渗透条件(Goddard和Pratt,1983; Camous等,1984; Camous等,1984; Bolton等,1989; Kishi等,1991)。值得注意的是,成功克服了这种发育障碍的培养基要么将培养基的渗透压降低,要么融合了有机渗透剂,例如甘氨酸(Gly),Betaine,β-丙氨酸和谷氨酰胺,渗透性为310 MOSM的培养基(Van Winkle等,1990; Biggers et al eal and osmolartials osmolarity。例如,已证明在KSOM或CZB培养基中培养小鼠胚胎(250 - 275 MOSM)可以抵御两细胞停滞(Chatot等,1990; Lawitts and Biggers,1991; 1993; 1993; Hadi等,2005)。当受外部条件干扰时,细胞体积控制的迅速恢复是通过Na + /H +交换器NHE1和HCO 3 + /Cl- -Chressanger AE2的激活来介导的,该E2调节Na +和Cl-的细胞内浓度。尽管如此,至关重要的是避免过度高离子浓度,这可能破坏正常的细胞生理和生化过程。Subsequently, preimplantation embryos and oocytes reactivate speci fi c organic osmolyte channels to internalize uncharged osmolytes, replacing inorganic ions and ensuring that cells maintain normal physiological and biochemical processes ( Alper, 2009 ; Donowitz et al., 2013 ; Nakajima et al., 2013 ; Tscherner et al., 2021)。对小鼠卵母细胞中的细胞体积调节机制的研究表明,编码Gly Transporter的SLC6A9的特定缺失消除了植入前胚胎中的GLY转运及其对催眠应激的能力(Tscherner等人,2023)。这些发现强调了对哺乳动物卵母细胞和植入前胚胎的健康发展进行精确细胞体积调节的必要性。gly是蛋白质和核酸合成中必不可少的前体,这对于快速细胞增殖至关重要(Redel等,2016; Alves等,2019)。据报道,Gly是猪卵泡液中最丰富的氨基酸(Hong and Lee,2007),这表明Gly可能是在体外改善卵母细胞成熟的重要因素。虽然精确的机制仍有待完全阐明,但新出现的证据表明,Gly作为牛胚胎和小鼠卵母细胞发展中的有机渗透剂的重要作用(Zhou等,2013; Herrick et al。
Murakami K,Hamazaki N,Hamada N,Nagamatsu G,Okamoto I,Ohta H,Nosaka Y,Semba Y,Hayashi K.在体外雄性小鼠的功能性卵母细胞的产生。 div>自然。 div>2023年3月; 615(7954):900-906。 doi:10.1038 / s41586-023-05834-x。 div>
小牛企业对奶牛场利润的贡献通常被认为很小,对奶牛场的牛肉选择通常不被视为优先级。然而,随着某些国家的乳制牛群的迅速扩张速度将在未来发生变化,奶牛群生育能力的改善相结合,以减少奶牛场所需的乳制品犊牛的优势。这提供了增加牛肉犊牛比例的机会,从而增加了小牛销售的价值和犊牛的销售性。牛肉胚胎可能会成为乳制品的新育种工具,因为生产商需要重新评估其繁殖政策,这是由于福利担忧和小牛价格差而需要重新评估其繁殖政策。辅助生殖技术可以通过允许增加遗传学精英大坝产生的后代来加速遗传增益。综合乳制品 - 牛奶牛肉系统有以下三类供体女性:(1)精英乳制品大坝,使用卵子拾起,从活着的女性中回收卵母细胞,并在体外用精液中的精液从精英奶牛场中施肥; (2)精英牛肉大坝,那里的卵母细胞是用卵子拾起从活雌性中回收的,并用精英牛肉牛的精液施肥; (3)商业牛肉大坝(≥50%的牛肉遗传学),其中卵巢是从battoir splausger中收集的,卵母细胞与精英牛肉牛的精液受精,这些精液适合于奶牛上使用(导致胚胎(胚胎含有≥75%的牛肉遗传学))。本评论的目的是描述除了将乳制牛群农作物的转化为良好的遗传优点乳制雌性犊牛和优质牛肉犊牛的结合外,这些共同发展的预期益处包括牛奶和牛肉产量的加速遗传增益。
的冷冻保存和其他保护方法,以解决与冷冻保存和其他保存方法有关的主题,包括但不限于(1)冷冻保存和其他保存配子的需求和科学地位(精子,卵母细胞,卵母细胞和动物),生动性的生产,并在生存中,以及整个生产的生产,以及整个生产,以及整个生产,以及整个生产的生产,以及整个生产的效果,以及整个生产效果,以及整个生产的生产,以及整个生产的生产,以及整个生产力,以及整个动物的生产,以及整个生产的生产效果和动物,以及遍及范围的生产效果,以及遍布杂物的生产效果,以及遍布效果和动物的生产; (2)新兴的冷冻保存以及其他保存方法和技术,以及如何优化和实施它们; (3)评估内在和外在因素对冷冻保存以及其他保存方案的质量,效率和成功的影响,包括可伸缩性和可重复性的方法; (4)分享技术,包括对冷冻保存最佳实践的动手培训以及对下一代科学家的培训; (5)从收集到利用的样品的保存和管理。
这种相对较新的技术可用于帮助小鼠等动物受孕,而标准 ICSI 无法帮助这些动物受孕(Kimura 和 Yanagimachi 1995)。压电辅助显微注射已被用作一种基因转移方法,其中精子被外源 DNA 包裹并注射到卵母细胞中(Perry 等人 1999)。该技术所需的工作站与标准 ICSI 工作站非常相似,但增加了一个连接到注射微量移液器支架的压电冲击驱动器。该装置轴向振动注射微量移液器并钻入卵母细胞。这种方法提高了成功率。由于微量移液器的振动幅度很小但频率很高,因此必须使用不会产生共振的机械稳定微操作器。微操作器越稳定,从压电冲击驱动器到微量移液器尖端的能量传输就越高效。大多数压电辅助微注射方案都需要使用汞丸来稳定注射微量移液器。不建议在 XenoWorks 数字微注射器中使用汞,尽管 XenoWorks 模拟微注射器适合此目的。