摘要:- 叶片跟踪是确定螺旋桨叶片尖端相对于彼此的位置的过程(叶片在同一旋转平面上旋转)。跟踪仅显示叶片的相对位置,而不是它们的实际路径。所有叶片应尽可能紧密地跟踪彼此。在航空学中,螺旋桨(也称为螺旋桨)将发动机或其他动力源的旋转运动转换为旋转的滑流,从而推动螺旋桨向前或向后。它包括一个旋转的动力驱动轮毂,轮毂上连接着几个径向翼型叶片,使得整个组件绕纵轴旋转。叶片螺距可以是固定的,手动可变到几个设定位置,或自动可变的“恒速”类型。关键词:- 叶片理论、螺旋桨、Cirrus SR-22
飞机尾迹是飞机在温度约为 −40°C 及以下时在对流层上部排放的产物,是人类对地球气候最明显的影响之一。最初,飞机尾迹的微物理特性与自然卷云不同,但随着时间的推移,飞机尾迹会失去形状并扩散,变得与自然卷云几乎无法区分,不仅在视觉上,而且在微物理特性上也是如此。飞机尾迹是消失还是发展成飞机尾卷云取决于环境相对湿度相对于冰。飞机尾迹将在充满冰的大气中持续存在。在过饱和状态下,冰晶会形成并提取过量的环境水蒸气。但是,线状飞机尾迹向卷云的转变尚不十分清楚,气候模型也没有很好地描述它。凝结尾迹的形成可以用施密特-阿普尔曼准则 (SAC) 1 来描述,这是一个简单的方程,它与大气温度和气压、燃料能量含量、排出的水蒸气量以及飞机的整体推进效率有关。SAC 预测可见凝结尾迹形成条件的可靠性已得到证实。
1. 简介 微波雷达测量云层和降水的一大优势是能够根据雷达反射率因子 Z 检索定量内容数据。这可以通过设计基于 Z 与各种微物理参数(例如冰水含量 IWC 或降雨率)之间的经验关系的算法,或基于将 Z 与其他测量值相结合的多种传感器方法来实现。然而,由于大气中微物理条件的多样性,算法只需要应用于那些被认为有效的条件。换句话说,首先需要确定目标,然后选择合适的算法。算法选择过程取决于云相以及水文气象密度、形状和大小分布等基本因素。例如,虽然卷云、高层云和积雨云的上部都是以冰相云为主的云,但不可能应用单一算法来检索这些目标中的 IWC:卷云通常只包含单个冰晶,高层云在较高温度下可能包含低密度冰晶聚合体,而积雨云可能结合了冰晶、雪花、结霜颗粒、霰甚至冰雹。不同类型的云通常受不同的云动力学过程控制,具有不同的微物理特性,从而导致不同的云辐射强迫 (H
本文介绍了区域大气建模系统(RAMS)的一系列应用,这是一个全面的中尺度气象建模系统。本文中讨论的应用包括大型涡流模拟(LES)和雷暴模拟,积云场,中尺度的构造系统,中纬度卷卷云,冬季风暴,机械和热效应的中尺度和中镜系统以及中镜系统的大气分散。还提供了当前RAMS选项的摘要。对当前正在进行的RAM的改进包括对云辐射,云微物理学,积云和表面土壤/营养参数化方案的改进,代码的并行化,更广泛的可视化能力的发展以及对中间级别的Cumulus cumulus参数化的研究。
目视下降 (BO) 是指直升机在干旱气候下起飞或降落时,旋翼下洗气流扬起灰尘,然后旋翼叶片将灰尘带回,导致驾驶舱窗外能见度很低或完全没有能见度的情况。在雪地(白化目视下降)或水面上着陆或起飞也会出现类似情况。值得注意的是,机组人员通常将雪地条件下的目视下降称为“雪球”,以将这种特殊情况与大气目视下降区分开来,大气目视下降是由全向卷云形成、雾气或连续积雪表面的阴天或间歇性云层与积雪地形混合而引起的。一般而言,目视环境恶化 (DVE) 会导致飞行员依赖不充分的驾驶舱仪表、机上机组人员的呼叫以及天生的驾驶技能来成功执行 DVE 着陆。在 DVE 中飞行对旋翼机飞行员来说一直是一个挑战。由于北约一直在干旱气候下(例如伊拉克、非洲和阿富汗)作战,因此旋翼机故障 (RWB) 是大约 75% 的联军直升机事故的罪魁祸首。在 HFM-162 任务组结束时的 2013 年报告中,总结了每个派遣国因 DVE 导致的旋翼机事故。这些统计数据在此处提供,在某些情况下,已更新至 2016 年。提出了改进 RW 飞机的建议,以帮助减少飞机和人员伤亡。
水蒸气是最重要的大气成分,对地球辐射收支有很大影响。除了水蒸气的直接辐射强迫外,其通过产生云滴的间接效应也在气候中起着至关重要的作用。因此,准确和定期地表征其在大气中的丰度至关重要,特别是在不断变化的气候系统中。在大气的上对流层/下平流层 (UTLS) 区域,水蒸气通过均质或非均质冻结过程驱动纯冰 (卷云) 云的生成,并通过沉积驱动云冰粒子的生长。卷云的辐射效应仍不为人所知;一些研究表明它们会冷却,而另一些研究表明它们会变暖,这取决于云光学厚度和冰粒大小和浓度的表现。在欧洲 CARIBIC 项目 [ 1 , 2 ](基于仪器容器的定期大气调查的民用飞机)的框架内,自 2005 年以来,我们利用实验室开发的基于光声 (PA) 方法的仪器,在 UTLS 区域(10 至 12 公里高度)的商用飞机上定期测量大气水蒸气和总水(即水蒸气和云水/冰的总和)浓度。机载 PA 水蒸气测量仪(称为 WaSul-Hygro)基于电信型近红外 (NIR) 二极管激光器。此外,为了确保同时测量总水量和水蒸气的要求,WaSul–Hygro 拥有针对低温低压条件优化的双室 PA 装置。这种操作由安装在飞机下方的特殊环境进气系统实现,该系统包含一个侧向进气口和一个前向进气口,用于对水蒸气进行采样
摘要。在全球范围内,航空的排放会通过复杂的过程影响地球的气候。捕捉卷曲和二氧化碳排放是导致航空辐射强迫气候的最大因素。概要卷曲,就像天然的卷云一样,会影响地球的气候。即使进行了广泛的研究,与其他航空对气候的影响相比,气候影响的重要性仍然存在主要的不确定性,需要进一步研究。概括的卷心包括线性缩小和相关的cirrus云;这些特征在于冰颗粒特性,例如大小,浓度,混合,灭绝,冰水含量,光学深度,几何深度和云覆盖率。由于预计空气流通量的增加,捕捉片的气候影响可能会加剧。全球围栏cirrus的辐射强迫有可能达到三倍,并且可以达到160 mwm - 2到2050年。此预测基于空气流通的预期增长,并可能转移到更高的高度。缩尾卷心的未来气候影响受到空气流动中的幅度和地理传播,燃料效率的进步,使用替代燃料的影响以及气候变化对背景大气层的影响的因素所影响。这项研究回顾了影响围栏形成以及围栏和围栏卷心的微物理过程。研究突出了知识和不确定性的差距,同时概述了未来的研究重点。更重要的是,该研究还探讨了全球观察数据集,以进行关注,当前分析和未来的预测,并将有助于评估与各种缓解策略相关的有效性和权衡。
第三届 ECATS 会议汇集了来自不同学科的研究人员,他们致力于研究有助于航空业应对其面临的许多重大环境挑战的问题。其中包括航空替代燃料、机场空气质量、气候影响、最佳飞行轨迹、飞机未来材料、推进技术。15 年来,ECATS 一直专注于这些日益重要的工作领域。ECATS 卓越网络于 2005 年在欧盟的资助下成立。2010 年,ECATS 成立了一个国际协会,其主要目标是继续召集科学和技术界,研究航空对环境的影响。时至今日,ECATS 仍继续与航空业、监管和科学界的利益相关者密切合作,以支持沟通、传播和开发活动。这些努力的一个成功结果是建立了一系列 ECATS 会议;第一次于 2013 年在柏林举行,第二次于 2016 年在雅典举行,第三次定于 2020 年 4 月在哥德堡举行。然而,世界已迅速被 COVID-19 大流行所席卷,本次会议已重新安排在 2020 年 10 月 13 日至 15 日举行,并将以虚拟方式举行。原定于 2020 年 4 月举行的会议的摘要征集吸引了大量优秀、有趣且具有前瞻性的投稿。为了保持高势头,科学委员会决定编写一本摘要书。本出版物是按会议安排的短格式和长格式摘要的组合。摘要集列出了一系列近期研究项目的新概念、成就和当前结果。这些内容共同构成了将于 10 月提交的工作大纲。机场空气质量会议概述了飞机发动机排放对环境和人类健康的影响。会议为许多机场研究设定了背景,开幕式介绍了对飞机发动机超细颗粒物排放对健康的潜在影响的调查。许多贡献旨在扩大对使用 CFD 和拉格朗日粒子模型对飞机排放进行建模的理解。我们建模能力的进步将有助于更好地了解飞机发动机排放对区域和当地空气质量的影响。本次会议的贡献表明,机场内及周围的超细颗粒物数量浓度可能增加,这可归因于飞机活动。此外,还报告了一项欧洲主要研究中正在进行的工作,以更好地了解飞机发动机的颗粒物排放。本次会议汇集了最具创新性的机场空气质量研究,以提供发展和成果的综合。这些成果将帮助业界制定更强有力的方法来理解和减轻影响。气候影响和缓解概念会议探讨了大气机制和原理,即航空业如何导致气候变化,特别是关注非二氧化碳影响和可用的有希望的缓解方案。展示了对全球航空影响定量估计的综合评估以及对尾迹和尾迹卷云、氮氧化物排放和气溶胶-冰云相互作用的气候影响的详细研究。介绍了替代技术和运营概念的缓解潜力,包括对尾迹缓解策略、电动和混合动力飞机、蒸汽喷射和回收航空发动机的研究。探索了借助战略计划和基于市场的措施实施此类替代概念的概念。